| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plendxnocndx | GIF version | ||
| Description: The slot for the orthocomplementation is not the slot for the order in an extensible structure. (Contributed by AV, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| plendxnocndx | ⊢ (le‘ndx) ≠ (oc‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10re 9492 | . . 3 ⊢ ;10 ∈ ℝ | |
| 2 | 1nn0 9282 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 3 | 0nn0 9281 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 4 | 1nn 9018 | . . . 4 ⊢ 1 ∈ ℕ | |
| 5 | 0lt1 8170 | . . . 4 ⊢ 0 < 1 | |
| 6 | 2, 3, 4, 5 | declt 9501 | . . 3 ⊢ ;10 < ;11 |
| 7 | 1, 6 | ltneii 8140 | . 2 ⊢ ;10 ≠ ;11 |
| 8 | plendx 12902 | . . 3 ⊢ (le‘ndx) = ;10 | |
| 9 | ocndx 12913 | . . 3 ⊢ (oc‘ndx) = ;11 | |
| 10 | 8, 9 | neeq12i 2384 | . 2 ⊢ ((le‘ndx) ≠ (oc‘ndx) ↔ ;10 ≠ ;11) |
| 11 | 7, 10 | mpbir 146 | 1 ⊢ (le‘ndx) ≠ (oc‘ndx) |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2367 ‘cfv 5259 0cc0 7896 1c1 7897 ;cdc 9474 ndxcnx 12700 lecple 12787 occoc 12788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-sub 8216 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-dec 9475 df-ndx 12706 df-slot 12707 df-ple 12800 df-ocomp 12801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |