| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnfldui | GIF version | ||
| Description: The invertible complex numbers are exactly those apart from zero. This is recapb 8786 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.) |
| Ref | Expression |
|---|---|
| cnfldui | ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recapb 8786 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 # 0 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) | |
| 2 | 1 | pm5.32i 454 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
| 3 | breq1 4065 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0)) | |
| 4 | 3 | elrab 2939 | . . . 4 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) |
| 5 | cncrng 14498 | . . . . . 6 ⊢ ℂfld ∈ CRing | |
| 6 | eqid 2209 | . . . . . . 7 ⊢ (Unit‘ℂfld) = (Unit‘ℂfld) | |
| 7 | cnfld1 14501 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
| 8 | eqid 2209 | . . . . . . 7 ⊢ (∥r‘ℂfld) = (∥r‘ℂfld) | |
| 9 | 6, 7, 8 | crngunit 14040 | . . . . . 6 ⊢ (ℂfld ∈ CRing → (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1)) |
| 10 | 5, 9 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1) |
| 11 | cnfldbas 14489 | . . . . . . . 8 ⊢ ℂ = (Base‘ℂfld) | |
| 12 | 11 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
| 13 | eqidd 2210 | . . . . . . 7 ⊢ (⊤ → (∥r‘ℂfld) = (∥r‘ℂfld)) | |
| 14 | cnring 14499 | . . . . . . . . 9 ⊢ ℂfld ∈ Ring | |
| 15 | ringsrg 13976 | . . . . . . . . 9 ⊢ (ℂfld ∈ Ring → ℂfld ∈ SRing) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . . . 8 ⊢ ℂfld ∈ SRing |
| 17 | 16 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℂfld ∈ SRing) |
| 18 | mpocnfldmul 14492 | . . . . . . . 8 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld) | |
| 19 | 18 | a1i 9 | . . . . . . 7 ⊢ (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)) |
| 20 | 12, 13, 17, 19 | dvdsrd 14023 | . . . . . 6 ⊢ (⊤ → (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1))) |
| 21 | 20 | mptru 1384 | . . . . 5 ⊢ (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1)) |
| 22 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
| 23 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 24 | 22, 23 | mulcld 8135 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝑥) ∈ ℂ) |
| 25 | oveq1 5981 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑦 → (𝑢 · 𝑣) = (𝑦 · 𝑣)) | |
| 26 | oveq2 5982 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑥 → (𝑦 · 𝑣) = (𝑦 · 𝑥)) | |
| 27 | eqid 2209 | . . . . . . . . . . 11 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) | |
| 28 | 25, 26, 27 | ovmpog 6110 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑦 · 𝑥) ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
| 29 | 22, 23, 24, 28 | syl3anc 1252 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
| 30 | mulcom 8096 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
| 31 | 29, 30 | eqtr4d 2245 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑥 · 𝑦)) |
| 32 | 31 | eqeq1d 2218 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1)) |
| 33 | 32 | rexbidva 2507 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
| 34 | 33 | pm5.32i 454 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
| 35 | 10, 21, 34 | 3bitri 206 | . . . 4 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
| 36 | 2, 4, 35 | 3bitr4ri 213 | . . 3 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
| 37 | 36 | eqriv 2206 | . 2 ⊢ (Unit‘ℂfld) = {𝑧 ∈ ℂ ∣ 𝑧 # 0} |
| 38 | 37 | eqcomi 2213 | 1 ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1375 ⊤wtru 1376 ∈ wcel 2180 ∃wrex 2489 {crab 2492 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 ∈ cmpo 5976 ℂcc 7965 0cc0 7967 1c1 7968 · cmul 7972 # cap 8696 Basecbs 12998 .rcmulr 13077 SRingcsrg 13892 Ringcrg 13925 CRingccrg 13926 ∥rcdsr 14015 Unitcui 14016 ℂfldccnfld 14485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-addf 8089 ax-mulf 8090 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-tpos 6361 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-rp 9818 df-fz 10173 df-cj 11319 df-abs 11476 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-plusg 13089 df-mulr 13090 df-starv 13091 df-tset 13095 df-ple 13096 df-ds 13098 df-unif 13099 df-0g 13257 df-topgen 13259 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-cmn 13789 df-abl 13790 df-mgp 13850 df-ur 13889 df-srg 13893 df-ring 13927 df-cring 13928 df-oppr 13997 df-dvdsr 14018 df-unit 14019 df-bl 14475 df-mopn 14476 df-fg 14478 df-metu 14479 df-cnfld 14486 |
| This theorem is referenced by: expghmap 14536 lgseisenlem4 15717 |
| Copyright terms: Public domain | W3C validator |