ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldui GIF version

Theorem cnfldui 14088
Description: The invertible complex numbers are exactly those apart from zero. This is recapb 8692 but expressed in terms of fld. (Contributed by Jim Kingdon, 11-Sep-2025.)
Assertion
Ref Expression
cnfldui {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld)

Proof of Theorem cnfldui
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recapb 8692 . . . . 5 (𝑥 ∈ ℂ → (𝑥 # 0 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
21pm5.32i 454 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
3 breq1 4033 . . . . 5 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
43elrab 2917 . . . 4 (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
5 cncrng 14068 . . . . . 6 fld ∈ CRing
6 eqid 2193 . . . . . . 7 (Unit‘ℂfld) = (Unit‘ℂfld)
7 cnfld1 14071 . . . . . . 7 1 = (1r‘ℂfld)
8 eqid 2193 . . . . . . 7 (∥r‘ℂfld) = (∥r‘ℂfld)
96, 7, 8crngunit 13610 . . . . . 6 (ℂfld ∈ CRing → (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1))
105, 9ax-mp 5 . . . . 5 (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1)
11 cnfldbas 14059 . . . . . . . 8 ℂ = (Base‘ℂfld)
1211a1i 9 . . . . . . 7 (⊤ → ℂ = (Base‘ℂfld))
13 eqidd 2194 . . . . . . 7 (⊤ → (∥r‘ℂfld) = (∥r‘ℂfld))
14 cnring 14069 . . . . . . . . 9 fld ∈ Ring
15 ringsrg 13546 . . . . . . . . 9 (ℂfld ∈ Ring → ℂfld ∈ SRing)
1614, 15ax-mp 5 . . . . . . . 8 fld ∈ SRing
1716a1i 9 . . . . . . 7 (⊤ → ℂfld ∈ SRing)
18 mpocnfldmul 14062 . . . . . . . 8 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
1918a1i 9 . . . . . . 7 (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld))
2012, 13, 17, 19dvdsrd 13593 . . . . . 6 (⊤ → (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1)))
2120mptru 1373 . . . . 5 (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1))
22 simpr 110 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
23 simpl 109 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑥 ∈ ℂ)
2422, 23mulcld 8042 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝑥) ∈ ℂ)
25 oveq1 5926 . . . . . . . . . . 11 (𝑢 = 𝑦 → (𝑢 · 𝑣) = (𝑦 · 𝑣))
26 oveq2 5927 . . . . . . . . . . 11 (𝑣 = 𝑥 → (𝑦 · 𝑣) = (𝑦 · 𝑥))
27 eqid 2193 . . . . . . . . . . 11 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
2825, 26, 27ovmpog 6054 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑦 · 𝑥) ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥))
2922, 23, 24, 28syl3anc 1249 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥))
30 mulcom 8003 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
3129, 30eqtr4d 2229 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑥 · 𝑦))
3231eqeq1d 2202 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1))
3332rexbidva 2491 . . . . . 6 (𝑥 ∈ ℂ → (∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
3433pm5.32i 454 . . . . 5 ((𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
3510, 21, 343bitri 206 . . . 4 (𝑥 ∈ (Unit‘ℂfld) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
362, 4, 353bitr4ri 213 . . 3 (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
3736eqriv 2190 . 2 (Unit‘ℂfld) = {𝑧 ∈ ℂ ∣ 𝑧 # 0}
3837eqcomi 2197 1 {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wtru 1365  wcel 2164  wrex 2473  {crab 2476   class class class wbr 4030  cfv 5255  (class class class)co 5919  cmpo 5921  cc 7872  0cc0 7874  1c1 7875   · cmul 7879   # cap 8602  Basecbs 12621  .rcmulr 12699  SRingcsrg 13462  Ringcrg 13495  CRingccrg 13496  rcdsr 13585  Unitcui 13586  fldccnfld 14055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-rp 9723  df-fz 10078  df-cj 10989  df-abs 11146  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-starv 12713  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-0g 12872  df-topgen 12874  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-cring 13498  df-oppr 13567  df-dvdsr 13588  df-unit 13589  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056
This theorem is referenced by:  expghmap  14106  lgseisenlem4  15230
  Copyright terms: Public domain W3C validator