ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldui GIF version

Theorem cnfldui 14077
Description: The invertible complex numbers are exactly those apart from zero. This is recapb 8690 but expressed in terms of fld. (Contributed by Jim Kingdon, 11-Sep-2025.)
Assertion
Ref Expression
cnfldui {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld)

Proof of Theorem cnfldui
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recapb 8690 . . . . 5 (𝑥 ∈ ℂ → (𝑥 # 0 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
21pm5.32i 454 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
3 breq1 4032 . . . . 5 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
43elrab 2916 . . . 4 (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
5 cncrng 14057 . . . . . 6 fld ∈ CRing
6 eqid 2193 . . . . . . 7 (Unit‘ℂfld) = (Unit‘ℂfld)
7 cnfld1 14060 . . . . . . 7 1 = (1r‘ℂfld)
8 eqid 2193 . . . . . . 7 (∥r‘ℂfld) = (∥r‘ℂfld)
96, 7, 8crngunit 13607 . . . . . 6 (ℂfld ∈ CRing → (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1))
105, 9ax-mp 5 . . . . 5 (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1)
11 cnfldbas 14051 . . . . . . . 8 ℂ = (Base‘ℂfld)
1211a1i 9 . . . . . . 7 (⊤ → ℂ = (Base‘ℂfld))
13 eqidd 2194 . . . . . . 7 (⊤ → (∥r‘ℂfld) = (∥r‘ℂfld))
14 cnring 14058 . . . . . . . . 9 fld ∈ Ring
15 ringsrg 13543 . . . . . . . . 9 (ℂfld ∈ Ring → ℂfld ∈ SRing)
1614, 15ax-mp 5 . . . . . . . 8 fld ∈ SRing
1716a1i 9 . . . . . . 7 (⊤ → ℂfld ∈ SRing)
18 mpocnfldmul 14055 . . . . . . . 8 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
1918a1i 9 . . . . . . 7 (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld))
2012, 13, 17, 19dvdsrd 13590 . . . . . 6 (⊤ → (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1)))
2120mptru 1373 . . . . 5 (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1))
22 simpr 110 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
23 simpl 109 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑥 ∈ ℂ)
2422, 23mulcld 8040 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝑥) ∈ ℂ)
25 oveq1 5925 . . . . . . . . . . 11 (𝑢 = 𝑦 → (𝑢 · 𝑣) = (𝑦 · 𝑣))
26 oveq2 5926 . . . . . . . . . . 11 (𝑣 = 𝑥 → (𝑦 · 𝑣) = (𝑦 · 𝑥))
27 eqid 2193 . . . . . . . . . . 11 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
2825, 26, 27ovmpog 6053 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑦 · 𝑥) ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥))
2922, 23, 24, 28syl3anc 1249 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥))
30 mulcom 8001 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
3129, 30eqtr4d 2229 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑥 · 𝑦))
3231eqeq1d 2202 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1))
3332rexbidva 2491 . . . . . 6 (𝑥 ∈ ℂ → (∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
3433pm5.32i 454 . . . . 5 ((𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
3510, 21, 343bitri 206 . . . 4 (𝑥 ∈ (Unit‘ℂfld) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
362, 4, 353bitr4ri 213 . . 3 (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
3736eqriv 2190 . 2 (Unit‘ℂfld) = {𝑧 ∈ ℂ ∣ 𝑧 # 0}
3837eqcomi 2197 1 {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wtru 1365  wcel 2164  wrex 2473  {crab 2476   class class class wbr 4029  cfv 5254  (class class class)co 5918  cmpo 5920  cc 7870  0cc0 7872  1c1 7873   · cmul 7877   # cap 8600  Basecbs 12618  .rcmulr 12696  SRingcsrg 13459  Ringcrg 13492  CRingccrg 13493  rcdsr 13582  Unitcui 13583  fldccnfld 14047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-fz 10075  df-cj 10986  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-starv 12710  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-cring 13495  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-icnfld 14048
This theorem is referenced by:  expghmap  14095  lgseisenlem4  15189
  Copyright terms: Public domain W3C validator