| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnfldui | GIF version | ||
| Description: The invertible complex numbers are exactly those apart from zero. This is recapb 8698 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.) |
| Ref | Expression |
|---|---|
| cnfldui | ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recapb 8698 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 # 0 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) | |
| 2 | 1 | pm5.32i 454 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
| 3 | breq1 4036 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0)) | |
| 4 | 3 | elrab 2920 | . . . 4 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) |
| 5 | cncrng 14125 | . . . . . 6 ⊢ ℂfld ∈ CRing | |
| 6 | eqid 2196 | . . . . . . 7 ⊢ (Unit‘ℂfld) = (Unit‘ℂfld) | |
| 7 | cnfld1 14128 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
| 8 | eqid 2196 | . . . . . . 7 ⊢ (∥r‘ℂfld) = (∥r‘ℂfld) | |
| 9 | 6, 7, 8 | crngunit 13667 | . . . . . 6 ⊢ (ℂfld ∈ CRing → (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1)) |
| 10 | 5, 9 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1) |
| 11 | cnfldbas 14116 | . . . . . . . 8 ⊢ ℂ = (Base‘ℂfld) | |
| 12 | 11 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
| 13 | eqidd 2197 | . . . . . . 7 ⊢ (⊤ → (∥r‘ℂfld) = (∥r‘ℂfld)) | |
| 14 | cnring 14126 | . . . . . . . . 9 ⊢ ℂfld ∈ Ring | |
| 15 | ringsrg 13603 | . . . . . . . . 9 ⊢ (ℂfld ∈ Ring → ℂfld ∈ SRing) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . . . 8 ⊢ ℂfld ∈ SRing |
| 17 | 16 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℂfld ∈ SRing) |
| 18 | mpocnfldmul 14119 | . . . . . . . 8 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld) | |
| 19 | 18 | a1i 9 | . . . . . . 7 ⊢ (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)) |
| 20 | 12, 13, 17, 19 | dvdsrd 13650 | . . . . . 6 ⊢ (⊤ → (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1))) |
| 21 | 20 | mptru 1373 | . . . . 5 ⊢ (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1)) |
| 22 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
| 23 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 24 | 22, 23 | mulcld 8047 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝑥) ∈ ℂ) |
| 25 | oveq1 5929 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑦 → (𝑢 · 𝑣) = (𝑦 · 𝑣)) | |
| 26 | oveq2 5930 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑥 → (𝑦 · 𝑣) = (𝑦 · 𝑥)) | |
| 27 | eqid 2196 | . . . . . . . . . . 11 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) | |
| 28 | 25, 26, 27 | ovmpog 6057 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑦 · 𝑥) ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
| 29 | 22, 23, 24, 28 | syl3anc 1249 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
| 30 | mulcom 8008 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
| 31 | 29, 30 | eqtr4d 2232 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑥 · 𝑦)) |
| 32 | 31 | eqeq1d 2205 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1)) |
| 33 | 32 | rexbidva 2494 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
| 34 | 33 | pm5.32i 454 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
| 35 | 10, 21, 34 | 3bitri 206 | . . . 4 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
| 36 | 2, 4, 35 | 3bitr4ri 213 | . . 3 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
| 37 | 36 | eqriv 2193 | . 2 ⊢ (Unit‘ℂfld) = {𝑧 ∈ ℂ ∣ 𝑧 # 0} |
| 38 | 37 | eqcomi 2200 | 1 ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 ∃wrex 2476 {crab 2479 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ∈ cmpo 5924 ℂcc 7877 0cc0 7879 1c1 7880 · cmul 7884 # cap 8608 Basecbs 12678 .rcmulr 12756 SRingcsrg 13519 Ringcrg 13552 CRingccrg 13553 ∥rcdsr 13642 Unitcui 13643 ℂfldccnfld 14112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-addf 8001 ax-mulf 8002 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-tpos 6303 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-uz 9602 df-rp 9729 df-fz 10084 df-cj 11007 df-abs 11164 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-starv 12770 df-tset 12774 df-ple 12775 df-ds 12777 df-unif 12778 df-0g 12929 df-topgen 12931 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-cmn 13416 df-abl 13417 df-mgp 13477 df-ur 13516 df-srg 13520 df-ring 13554 df-cring 13555 df-oppr 13624 df-dvdsr 13645 df-unit 13646 df-bl 14102 df-mopn 14103 df-fg 14105 df-metu 14106 df-cnfld 14113 |
| This theorem is referenced by: expghmap 14163 lgseisenlem4 15314 |
| Copyright terms: Public domain | W3C validator |