| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnfldui | GIF version | ||
| Description: The invertible complex numbers are exactly those apart from zero. This is recapb 8826 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.) |
| Ref | Expression |
|---|---|
| cnfldui | ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recapb 8826 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 # 0 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) | |
| 2 | 1 | pm5.32i 454 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
| 3 | breq1 4086 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0)) | |
| 4 | 3 | elrab 2959 | . . . 4 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) |
| 5 | cncrng 14541 | . . . . . 6 ⊢ ℂfld ∈ CRing | |
| 6 | eqid 2229 | . . . . . . 7 ⊢ (Unit‘ℂfld) = (Unit‘ℂfld) | |
| 7 | cnfld1 14544 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
| 8 | eqid 2229 | . . . . . . 7 ⊢ (∥r‘ℂfld) = (∥r‘ℂfld) | |
| 9 | 6, 7, 8 | crngunit 14083 | . . . . . 6 ⊢ (ℂfld ∈ CRing → (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1)) |
| 10 | 5, 9 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1) |
| 11 | cnfldbas 14532 | . . . . . . . 8 ⊢ ℂ = (Base‘ℂfld) | |
| 12 | 11 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
| 13 | eqidd 2230 | . . . . . . 7 ⊢ (⊤ → (∥r‘ℂfld) = (∥r‘ℂfld)) | |
| 14 | cnring 14542 | . . . . . . . . 9 ⊢ ℂfld ∈ Ring | |
| 15 | ringsrg 14018 | . . . . . . . . 9 ⊢ (ℂfld ∈ Ring → ℂfld ∈ SRing) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . . . 8 ⊢ ℂfld ∈ SRing |
| 17 | 16 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℂfld ∈ SRing) |
| 18 | mpocnfldmul 14535 | . . . . . . . 8 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld) | |
| 19 | 18 | a1i 9 | . . . . . . 7 ⊢ (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)) |
| 20 | 12, 13, 17, 19 | dvdsrd 14066 | . . . . . 6 ⊢ (⊤ → (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1))) |
| 21 | 20 | mptru 1404 | . . . . 5 ⊢ (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1)) |
| 22 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
| 23 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 24 | 22, 23 | mulcld 8175 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝑥) ∈ ℂ) |
| 25 | oveq1 6014 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑦 → (𝑢 · 𝑣) = (𝑦 · 𝑣)) | |
| 26 | oveq2 6015 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑥 → (𝑦 · 𝑣) = (𝑦 · 𝑥)) | |
| 27 | eqid 2229 | . . . . . . . . . . 11 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) | |
| 28 | 25, 26, 27 | ovmpog 6145 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑦 · 𝑥) ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
| 29 | 22, 23, 24, 28 | syl3anc 1271 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
| 30 | mulcom 8136 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
| 31 | 29, 30 | eqtr4d 2265 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑥 · 𝑦)) |
| 32 | 31 | eqeq1d 2238 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1)) |
| 33 | 32 | rexbidva 2527 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
| 34 | 33 | pm5.32i 454 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
| 35 | 10, 21, 34 | 3bitri 206 | . . . 4 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
| 36 | 2, 4, 35 | 3bitr4ri 213 | . . 3 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
| 37 | 36 | eqriv 2226 | . 2 ⊢ (Unit‘ℂfld) = {𝑧 ∈ ℂ ∣ 𝑧 # 0} |
| 38 | 37 | eqcomi 2233 | 1 ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ∃wrex 2509 {crab 2512 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 ∈ cmpo 6009 ℂcc 8005 0cc0 8007 1c1 8008 · cmul 8012 # cap 8736 Basecbs 13040 .rcmulr 13119 SRingcsrg 13934 Ringcrg 13967 CRingccrg 13968 ∥rcdsr 14057 Unitcui 14058 ℂfldccnfld 14528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-tpos 6397 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-rp 9858 df-fz 10213 df-cj 11361 df-abs 11518 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-plusg 13131 df-mulr 13132 df-starv 13133 df-tset 13137 df-ple 13138 df-ds 13140 df-unif 13141 df-0g 13299 df-topgen 13301 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-cmn 13831 df-abl 13832 df-mgp 13892 df-ur 13931 df-srg 13935 df-ring 13969 df-cring 13970 df-oppr 14039 df-dvdsr 14060 df-unit 14061 df-bl 14518 df-mopn 14519 df-fg 14521 df-metu 14522 df-cnfld 14529 |
| This theorem is referenced by: expghmap 14579 lgseisenlem4 15760 |
| Copyright terms: Public domain | W3C validator |