ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldui GIF version

Theorem cnfldui 14518
Description: The invertible complex numbers are exactly those apart from zero. This is recapb 8786 but expressed in terms of fld. (Contributed by Jim Kingdon, 11-Sep-2025.)
Assertion
Ref Expression
cnfldui {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld)

Proof of Theorem cnfldui
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recapb 8786 . . . . 5 (𝑥 ∈ ℂ → (𝑥 # 0 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
21pm5.32i 454 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
3 breq1 4065 . . . . 5 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
43elrab 2939 . . . 4 (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
5 cncrng 14498 . . . . . 6 fld ∈ CRing
6 eqid 2209 . . . . . . 7 (Unit‘ℂfld) = (Unit‘ℂfld)
7 cnfld1 14501 . . . . . . 7 1 = (1r‘ℂfld)
8 eqid 2209 . . . . . . 7 (∥r‘ℂfld) = (∥r‘ℂfld)
96, 7, 8crngunit 14040 . . . . . 6 (ℂfld ∈ CRing → (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1))
105, 9ax-mp 5 . . . . 5 (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1)
11 cnfldbas 14489 . . . . . . . 8 ℂ = (Base‘ℂfld)
1211a1i 9 . . . . . . 7 (⊤ → ℂ = (Base‘ℂfld))
13 eqidd 2210 . . . . . . 7 (⊤ → (∥r‘ℂfld) = (∥r‘ℂfld))
14 cnring 14499 . . . . . . . . 9 fld ∈ Ring
15 ringsrg 13976 . . . . . . . . 9 (ℂfld ∈ Ring → ℂfld ∈ SRing)
1614, 15ax-mp 5 . . . . . . . 8 fld ∈ SRing
1716a1i 9 . . . . . . 7 (⊤ → ℂfld ∈ SRing)
18 mpocnfldmul 14492 . . . . . . . 8 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
1918a1i 9 . . . . . . 7 (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld))
2012, 13, 17, 19dvdsrd 14023 . . . . . 6 (⊤ → (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1)))
2120mptru 1384 . . . . 5 (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1))
22 simpr 110 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
23 simpl 109 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑥 ∈ ℂ)
2422, 23mulcld 8135 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝑥) ∈ ℂ)
25 oveq1 5981 . . . . . . . . . . 11 (𝑢 = 𝑦 → (𝑢 · 𝑣) = (𝑦 · 𝑣))
26 oveq2 5982 . . . . . . . . . . 11 (𝑣 = 𝑥 → (𝑦 · 𝑣) = (𝑦 · 𝑥))
27 eqid 2209 . . . . . . . . . . 11 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
2825, 26, 27ovmpog 6110 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑦 · 𝑥) ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥))
2922, 23, 24, 28syl3anc 1252 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥))
30 mulcom 8096 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
3129, 30eqtr4d 2245 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑥 · 𝑦))
3231eqeq1d 2218 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1))
3332rexbidva 2507 . . . . . 6 (𝑥 ∈ ℂ → (∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
3433pm5.32i 454 . . . . 5 ((𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
3510, 21, 343bitri 206 . . . 4 (𝑥 ∈ (Unit‘ℂfld) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
362, 4, 353bitr4ri 213 . . 3 (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
3736eqriv 2206 . 2 (Unit‘ℂfld) = {𝑧 ∈ ℂ ∣ 𝑧 # 0}
3837eqcomi 2213 1 {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1375  wtru 1376  wcel 2180  wrex 2489  {crab 2492   class class class wbr 4062  cfv 5294  (class class class)co 5974  cmpo 5976  cc 7965  0cc0 7967  1c1 7968   · cmul 7972   # cap 8696  Basecbs 12998  .rcmulr 13077  SRingcsrg 13892  Ringcrg 13925  CRingccrg 13926  rcdsr 14015  Unitcui 14016  fldccnfld 14485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-tpos 6361  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-rp 9818  df-fz 10173  df-cj 11319  df-abs 11476  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-starv 13091  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-0g 13257  df-topgen 13259  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-cmn 13789  df-abl 13790  df-mgp 13850  df-ur 13889  df-srg 13893  df-ring 13927  df-cring 13928  df-oppr 13997  df-dvdsr 14018  df-unit 14019  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486
This theorem is referenced by:  expghmap  14536  lgseisenlem4  15717
  Copyright terms: Public domain W3C validator