ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldui GIF version

Theorem cnfldui 14561
Description: The invertible complex numbers are exactly those apart from zero. This is recapb 8826 but expressed in terms of fld. (Contributed by Jim Kingdon, 11-Sep-2025.)
Assertion
Ref Expression
cnfldui {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld)

Proof of Theorem cnfldui
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recapb 8826 . . . . 5 (𝑥 ∈ ℂ → (𝑥 # 0 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
21pm5.32i 454 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
3 breq1 4086 . . . . 5 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
43elrab 2959 . . . 4 (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
5 cncrng 14541 . . . . . 6 fld ∈ CRing
6 eqid 2229 . . . . . . 7 (Unit‘ℂfld) = (Unit‘ℂfld)
7 cnfld1 14544 . . . . . . 7 1 = (1r‘ℂfld)
8 eqid 2229 . . . . . . 7 (∥r‘ℂfld) = (∥r‘ℂfld)
96, 7, 8crngunit 14083 . . . . . 6 (ℂfld ∈ CRing → (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1))
105, 9ax-mp 5 . . . . 5 (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1)
11 cnfldbas 14532 . . . . . . . 8 ℂ = (Base‘ℂfld)
1211a1i 9 . . . . . . 7 (⊤ → ℂ = (Base‘ℂfld))
13 eqidd 2230 . . . . . . 7 (⊤ → (∥r‘ℂfld) = (∥r‘ℂfld))
14 cnring 14542 . . . . . . . . 9 fld ∈ Ring
15 ringsrg 14018 . . . . . . . . 9 (ℂfld ∈ Ring → ℂfld ∈ SRing)
1614, 15ax-mp 5 . . . . . . . 8 fld ∈ SRing
1716a1i 9 . . . . . . 7 (⊤ → ℂfld ∈ SRing)
18 mpocnfldmul 14535 . . . . . . . 8 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
1918a1i 9 . . . . . . 7 (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld))
2012, 13, 17, 19dvdsrd 14066 . . . . . 6 (⊤ → (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1)))
2120mptru 1404 . . . . 5 (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1))
22 simpr 110 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
23 simpl 109 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑥 ∈ ℂ)
2422, 23mulcld 8175 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝑥) ∈ ℂ)
25 oveq1 6014 . . . . . . . . . . 11 (𝑢 = 𝑦 → (𝑢 · 𝑣) = (𝑦 · 𝑣))
26 oveq2 6015 . . . . . . . . . . 11 (𝑣 = 𝑥 → (𝑦 · 𝑣) = (𝑦 · 𝑥))
27 eqid 2229 . . . . . . . . . . 11 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
2825, 26, 27ovmpog 6145 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑦 · 𝑥) ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥))
2922, 23, 24, 28syl3anc 1271 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥))
30 mulcom 8136 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
3129, 30eqtr4d 2265 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑥 · 𝑦))
3231eqeq1d 2238 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1))
3332rexbidva 2527 . . . . . 6 (𝑥 ∈ ℂ → (∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
3433pm5.32i 454 . . . . 5 ((𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
3510, 21, 343bitri 206 . . . 4 (𝑥 ∈ (Unit‘ℂfld) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1))
362, 4, 353bitr4ri 213 . . 3 (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
3736eqriv 2226 . 2 (Unit‘ℂfld) = {𝑧 ∈ ℂ ∣ 𝑧 # 0}
3837eqcomi 2233 1 {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wtru 1396  wcel 2200  wrex 2509  {crab 2512   class class class wbr 4083  cfv 5318  (class class class)co 6007  cmpo 6009  cc 8005  0cc0 8007  1c1 8008   · cmul 8012   # cap 8736  Basecbs 13040  .rcmulr 13119  SRingcsrg 13934  Ringcrg 13967  CRingccrg 13968  rcdsr 14057  Unitcui 14058  fldccnfld 14528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-tpos 6397  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-rp 9858  df-fz 10213  df-cj 11361  df-abs 11518  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-starv 13133  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-0g 13299  df-topgen 13301  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-cmn 13831  df-abl 13832  df-mgp 13892  df-ur 13931  df-srg 13935  df-ring 13969  df-cring 13970  df-oppr 14039  df-dvdsr 14060  df-unit 14061  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529
This theorem is referenced by:  expghmap  14579  lgseisenlem4  15760
  Copyright terms: Public domain W3C validator