![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnfldui | GIF version |
Description: The invertible complex numbers are exactly those apart from zero. This is recapb 8690 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.) |
Ref | Expression |
---|---|
cnfldui | ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recapb 8690 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 # 0 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) | |
2 | 1 | pm5.32i 454 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
3 | breq1 4032 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0)) | |
4 | 3 | elrab 2916 | . . . 4 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) |
5 | cncrng 14057 | . . . . . 6 ⊢ ℂfld ∈ CRing | |
6 | eqid 2193 | . . . . . . 7 ⊢ (Unit‘ℂfld) = (Unit‘ℂfld) | |
7 | cnfld1 14060 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
8 | eqid 2193 | . . . . . . 7 ⊢ (∥r‘ℂfld) = (∥r‘ℂfld) | |
9 | 6, 7, 8 | crngunit 13607 | . . . . . 6 ⊢ (ℂfld ∈ CRing → (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1)) |
10 | 5, 9 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1) |
11 | cnfldbas 14051 | . . . . . . . 8 ⊢ ℂ = (Base‘ℂfld) | |
12 | 11 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
13 | eqidd 2194 | . . . . . . 7 ⊢ (⊤ → (∥r‘ℂfld) = (∥r‘ℂfld)) | |
14 | cnring 14058 | . . . . . . . . 9 ⊢ ℂfld ∈ Ring | |
15 | ringsrg 13543 | . . . . . . . . 9 ⊢ (ℂfld ∈ Ring → ℂfld ∈ SRing) | |
16 | 14, 15 | ax-mp 5 | . . . . . . . 8 ⊢ ℂfld ∈ SRing |
17 | 16 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℂfld ∈ SRing) |
18 | mpocnfldmul 14055 | . . . . . . . 8 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld) | |
19 | 18 | a1i 9 | . . . . . . 7 ⊢ (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)) |
20 | 12, 13, 17, 19 | dvdsrd 13590 | . . . . . 6 ⊢ (⊤ → (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1))) |
21 | 20 | mptru 1373 | . . . . 5 ⊢ (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1)) |
22 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
23 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑥 ∈ ℂ) | |
24 | 22, 23 | mulcld 8040 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝑥) ∈ ℂ) |
25 | oveq1 5925 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑦 → (𝑢 · 𝑣) = (𝑦 · 𝑣)) | |
26 | oveq2 5926 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑥 → (𝑦 · 𝑣) = (𝑦 · 𝑥)) | |
27 | eqid 2193 | . . . . . . . . . . 11 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) | |
28 | 25, 26, 27 | ovmpog 6053 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑦 · 𝑥) ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
29 | 22, 23, 24, 28 | syl3anc 1249 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
30 | mulcom 8001 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
31 | 29, 30 | eqtr4d 2229 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑥 · 𝑦)) |
32 | 31 | eqeq1d 2202 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1)) |
33 | 32 | rexbidva 2491 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
34 | 33 | pm5.32i 454 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
35 | 10, 21, 34 | 3bitri 206 | . . . 4 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
36 | 2, 4, 35 | 3bitr4ri 213 | . . 3 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
37 | 36 | eqriv 2190 | . 2 ⊢ (Unit‘ℂfld) = {𝑧 ∈ ℂ ∣ 𝑧 # 0} |
38 | 37 | eqcomi 2197 | 1 ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ⊤wtru 1365 ∈ wcel 2164 ∃wrex 2473 {crab 2476 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ∈ cmpo 5920 ℂcc 7870 0cc0 7872 1c1 7873 · cmul 7877 # cap 8600 Basecbs 12618 .rcmulr 12696 SRingcsrg 13459 Ringcrg 13492 CRingccrg 13493 ∥rcdsr 13582 Unitcui 13583 ℂfldccnfld 14047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-tpos 6298 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-dec 9449 df-uz 9593 df-fz 10075 df-cj 10986 df-struct 12620 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-starv 12710 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-cmn 13356 df-abl 13357 df-mgp 13417 df-ur 13456 df-srg 13460 df-ring 13494 df-cring 13495 df-oppr 13564 df-dvdsr 13585 df-unit 13586 df-icnfld 14048 |
This theorem is referenced by: expghmap 14095 lgseisenlem4 15189 |
Copyright terms: Public domain | W3C validator |