![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnfldui | GIF version |
Description: The invertible complex numbers are exactly those apart from zero. This is recapb 8692 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.) |
Ref | Expression |
---|---|
cnfldui | ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recapb 8692 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 # 0 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) | |
2 | 1 | pm5.32i 454 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
3 | breq1 4033 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0)) | |
4 | 3 | elrab 2917 | . . . 4 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) |
5 | cncrng 14068 | . . . . . 6 ⊢ ℂfld ∈ CRing | |
6 | eqid 2193 | . . . . . . 7 ⊢ (Unit‘ℂfld) = (Unit‘ℂfld) | |
7 | cnfld1 14071 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
8 | eqid 2193 | . . . . . . 7 ⊢ (∥r‘ℂfld) = (∥r‘ℂfld) | |
9 | 6, 7, 8 | crngunit 13610 | . . . . . 6 ⊢ (ℂfld ∈ CRing → (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1)) |
10 | 5, 9 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥(∥r‘ℂfld)1) |
11 | cnfldbas 14059 | . . . . . . . 8 ⊢ ℂ = (Base‘ℂfld) | |
12 | 11 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
13 | eqidd 2194 | . . . . . . 7 ⊢ (⊤ → (∥r‘ℂfld) = (∥r‘ℂfld)) | |
14 | cnring 14069 | . . . . . . . . 9 ⊢ ℂfld ∈ Ring | |
15 | ringsrg 13546 | . . . . . . . . 9 ⊢ (ℂfld ∈ Ring → ℂfld ∈ SRing) | |
16 | 14, 15 | ax-mp 5 | . . . . . . . 8 ⊢ ℂfld ∈ SRing |
17 | 16 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℂfld ∈ SRing) |
18 | mpocnfldmul 14062 | . . . . . . . 8 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld) | |
19 | 18 | a1i 9 | . . . . . . 7 ⊢ (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)) |
20 | 12, 13, 17, 19 | dvdsrd 13593 | . . . . . 6 ⊢ (⊤ → (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1))) |
21 | 20 | mptru 1373 | . . . . 5 ⊢ (𝑥(∥r‘ℂfld)1 ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1)) |
22 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
23 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑥 ∈ ℂ) | |
24 | 22, 23 | mulcld 8042 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 · 𝑥) ∈ ℂ) |
25 | oveq1 5926 | . . . . . . . . . . 11 ⊢ (𝑢 = 𝑦 → (𝑢 · 𝑣) = (𝑦 · 𝑣)) | |
26 | oveq2 5927 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑥 → (𝑦 · 𝑣) = (𝑦 · 𝑥)) | |
27 | eqid 2193 | . . . . . . . . . . 11 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) | |
28 | 25, 26, 27 | ovmpog 6054 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑦 · 𝑥) ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
29 | 22, 23, 24, 28 | syl3anc 1249 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
30 | mulcom 8003 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
31 | 29, 30 | eqtr4d 2229 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑥 · 𝑦)) |
32 | 31 | eqeq1d 2202 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1)) |
33 | 32 | rexbidva 2491 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1 ↔ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
34 | 33 | pm5.32i 454 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
35 | 10, 21, 34 | 3bitri 206 | . . . 4 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦 ∈ ℂ (𝑥 · 𝑦) = 1)) |
36 | 2, 4, 35 | 3bitr4ri 213 | . . 3 ⊢ (𝑥 ∈ (Unit‘ℂfld) ↔ 𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
37 | 36 | eqriv 2190 | . 2 ⊢ (Unit‘ℂfld) = {𝑧 ∈ ℂ ∣ 𝑧 # 0} |
38 | 37 | eqcomi 2197 | 1 ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ⊤wtru 1365 ∈ wcel 2164 ∃wrex 2473 {crab 2476 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 ℂcc 7872 0cc0 7874 1c1 7875 · cmul 7879 # cap 8602 Basecbs 12621 .rcmulr 12699 SRingcsrg 13462 Ringcrg 13495 CRingccrg 13496 ∥rcdsr 13585 Unitcui 13586 ℂfldccnfld 14055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-tp 3627 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-tpos 6300 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-uz 9596 df-rp 9723 df-fz 10078 df-cj 10989 df-abs 11146 df-struct 12623 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-starv 12713 df-tset 12717 df-ple 12718 df-ds 12720 df-unif 12721 df-0g 12872 df-topgen 12874 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-cmn 13359 df-abl 13360 df-mgp 13420 df-ur 13459 df-srg 13463 df-ring 13497 df-cring 13498 df-oppr 13567 df-dvdsr 13588 df-unit 13589 df-bl 14045 df-mopn 14046 df-fg 14048 df-metu 14049 df-cnfld 14056 |
This theorem is referenced by: expghmap 14106 lgseisenlem4 15230 |
Copyright terms: Public domain | W3C validator |