ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgrhm2 GIF version

Theorem mulgrhm2 14242
Description: The powers of the element 1 give the unique ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgrhm.1 1 = (1r𝑅)
Assertion
Ref Expression
mulgrhm2 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
Distinct variable groups:   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgrhm2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 zringbas 14228 . . . . . . . . . 10 ℤ = (Base‘ℤring)
2 eqid 2196 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
31, 2rhmf 13795 . . . . . . . . 9 (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓:ℤ⟶(Base‘𝑅))
43adantl 277 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓:ℤ⟶(Base‘𝑅))
54feqmptd 5617 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑓𝑛)))
6 rhmghm 13794 . . . . . . . . . . 11 (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ (ℤring GrpHom 𝑅))
76ad2antlr 489 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑓 ∈ (ℤring GrpHom 𝑅))
8 simpr 110 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
9 1zzd 9370 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ)
10 eqid 2196 . . . . . . . . . . 11 (.g‘ℤring) = (.g‘ℤring)
11 mulgghm2.m . . . . . . . . . . 11 · = (.g𝑅)
121, 10, 11ghmmulg 13462 . . . . . . . . . 10 ((𝑓 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1)))
137, 8, 9, 12syl3anc 1249 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1)))
14 ax-1cn 7989 . . . . . . . . . . . . 13 1 ∈ ℂ
15 cnfldmulg 14208 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
1614, 15mpan2 425 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
17 1z 9369 . . . . . . . . . . . . 13 1 ∈ ℤ
1816adantr 276 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1))
19 zringmulg 14230 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℤring)1) = (𝑛 · 1))
2018, 19eqtr4d 2232 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1))
2117, 20mpan2 425 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1))
22 zcn 9348 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
2322mulridd 8060 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛)
2416, 21, 233eqtr3d 2237 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (𝑛(.g‘ℤring)1) = 𝑛)
2524adantl 277 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛(.g‘ℤring)1) = 𝑛)
2625fveq2d 5565 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑓𝑛))
27 zring1 14233 . . . . . . . . . . . 12 1 = (1r‘ℤring)
28 mulgrhm.1 . . . . . . . . . . . 12 1 = (1r𝑅)
2927, 28rhm1 13799 . . . . . . . . . . 11 (𝑓 ∈ (ℤring RingHom 𝑅) → (𝑓‘1) = 1 )
3029ad2antlr 489 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘1) = 1 )
3130oveq2d 5941 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑓‘1)) = (𝑛 · 1 ))
3213, 26, 313eqtr3d 2237 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓𝑛) = (𝑛 · 1 ))
3332mpteq2dva 4124 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → (𝑛 ∈ ℤ ↦ (𝑓𝑛)) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
345, 33eqtrd 2229 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
35 mulgghm2.f . . . . . 6 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
3634, 35eqtr4di 2247 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = 𝐹)
37 velsn 3640 . . . . 5 (𝑓 ∈ {𝐹} ↔ 𝑓 = 𝐹)
3836, 37sylibr 134 . . . 4 ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 ∈ {𝐹})
3938ex 115 . . 3 (𝑅 ∈ Ring → (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ {𝐹}))
4039ssrdv 3190 . 2 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) ⊆ {𝐹})
4111, 35, 28mulgrhm 14241 . . 3 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
4241snssd 3768 . 2 (𝑅 ∈ Ring → {𝐹} ⊆ (ℤring RingHom 𝑅))
4340, 42eqssd 3201 1 (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {csn 3623  cmpt 4095  wf 5255  cfv 5259  (class class class)co 5925  cc 7894  1c1 7897   · cmul 7901  cz 9343  Basecbs 12703  .gcmg 13325   GrpHom cghm 13446  1rcur 13591  Ringcrg 13628   RingHom crh 13782  fldccnfld 14188  ringczring 14222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-cj 11024  df-abs 11181  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-starv 12795  df-tset 12799  df-ple 12800  df-ds 12802  df-unif 12803  df-0g 12960  df-topgen 12962  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-minusg 13206  df-mulg 13326  df-subg 13376  df-ghm 13447  df-cmn 13492  df-mgp 13553  df-ur 13592  df-ring 13630  df-cring 13631  df-rhm 13784  df-subrg 13851  df-bl 14178  df-mopn 14179  df-fg 14181  df-metu 14182  df-cnfld 14189  df-zring 14223
This theorem is referenced by:  zrhval2  14251  zrhrhmb  14254
  Copyright terms: Public domain W3C validator