| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulgrhm2 | GIF version | ||
| Description: The powers of the element 1 give the unique ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) | 
| Ref | Expression | 
|---|---|
| mulgghm2.m | ⊢ · = (.g‘𝑅) | 
| mulgghm2.f | ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | 
| mulgrhm.1 | ⊢ 1 = (1r‘𝑅) | 
| Ref | Expression | 
|---|---|
| mulgrhm2 | ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zringbas 14152 | . . . . . . . . . 10 ⊢ ℤ = (Base‘ℤring) | |
| 2 | eqid 2196 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | rhmf 13719 | . . . . . . . . 9 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓:ℤ⟶(Base‘𝑅)) | 
| 4 | 3 | adantl 277 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓:ℤ⟶(Base‘𝑅)) | 
| 5 | 4 | feqmptd 5614 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑓‘𝑛))) | 
| 6 | rhmghm 13718 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ (ℤring GrpHom 𝑅)) | |
| 7 | 6 | ad2antlr 489 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑓 ∈ (ℤring GrpHom 𝑅)) | 
| 8 | simpr 110 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
| 9 | 1zzd 9353 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ) | |
| 10 | eqid 2196 | . . . . . . . . . . 11 ⊢ (.g‘ℤring) = (.g‘ℤring) | |
| 11 | mulgghm2.m | . . . . . . . . . . 11 ⊢ · = (.g‘𝑅) | |
| 12 | 1, 10, 11 | ghmmulg 13386 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1))) | 
| 13 | 7, 8, 9, 12 | syl3anc 1249 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1))) | 
| 14 | ax-1cn 7972 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℂ | |
| 15 | cnfldmulg 14132 | . . . . . . . . . . . . 13 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) | |
| 16 | 14, 15 | mpan2 425 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) | 
| 17 | 1z 9352 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℤ | |
| 18 | 16 | adantr 276 | . . . . . . . . . . . . . 14 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) | 
| 19 | zringmulg 14154 | . . . . . . . . . . . . . 14 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℤring)1) = (𝑛 · 1)) | |
| 20 | 18, 19 | eqtr4d 2232 | . . . . . . . . . . . . 13 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1)) | 
| 21 | 17, 20 | mpan2 425 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1)) | 
| 22 | zcn 9331 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 23 | 22 | mulridd 8043 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛) | 
| 24 | 16, 21, 23 | 3eqtr3d 2237 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℤring)1) = 𝑛) | 
| 25 | 24 | adantl 277 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛(.g‘ℤring)1) = 𝑛) | 
| 26 | 25 | fveq2d 5562 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑓‘𝑛)) | 
| 27 | zring1 14157 | . . . . . . . . . . . 12 ⊢ 1 = (1r‘ℤring) | |
| 28 | mulgrhm.1 | . . . . . . . . . . . 12 ⊢ 1 = (1r‘𝑅) | |
| 29 | 27, 28 | rhm1 13723 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → (𝑓‘1) = 1 ) | 
| 30 | 29 | ad2antlr 489 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘1) = 1 ) | 
| 31 | 30 | oveq2d 5938 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑓‘1)) = (𝑛 · 1 )) | 
| 32 | 13, 26, 31 | 3eqtr3d 2237 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘𝑛) = (𝑛 · 1 )) | 
| 33 | 32 | mpteq2dva 4123 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → (𝑛 ∈ ℤ ↦ (𝑓‘𝑛)) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) | 
| 34 | 5, 33 | eqtrd 2229 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) | 
| 35 | mulgghm2.f | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | |
| 36 | 34, 35 | eqtr4di 2247 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = 𝐹) | 
| 37 | velsn 3639 | . . . . 5 ⊢ (𝑓 ∈ {𝐹} ↔ 𝑓 = 𝐹) | |
| 38 | 36, 37 | sylibr 134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 ∈ {𝐹}) | 
| 39 | 38 | ex 115 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ {𝐹})) | 
| 40 | 39 | ssrdv 3189 | . 2 ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) ⊆ {𝐹}) | 
| 41 | 11, 35, 28 | mulgrhm 14165 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅)) | 
| 42 | 41 | snssd 3767 | . 2 ⊢ (𝑅 ∈ Ring → {𝐹} ⊆ (ℤring RingHom 𝑅)) | 
| 43 | 40, 42 | eqssd 3200 | 1 ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {csn 3622 ↦ cmpt 4094 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 1c1 7880 · cmul 7884 ℤcz 9326 Basecbs 12678 .gcmg 13249 GrpHom cghm 13370 1rcur 13515 Ringcrg 13552 RingHom crh 13706 ℂfldccnfld 14112 ℤringczring 14146 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-addf 8001 ax-mulf 8002 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-uz 9602 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-cj 11007 df-abs 11164 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-starv 12770 df-tset 12774 df-ple 12775 df-ds 12777 df-unif 12778 df-0g 12929 df-topgen 12931 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mhm 13091 df-grp 13135 df-minusg 13136 df-mulg 13250 df-subg 13300 df-ghm 13371 df-cmn 13416 df-mgp 13477 df-ur 13516 df-ring 13554 df-cring 13555 df-rhm 13708 df-subrg 13775 df-bl 14102 df-mopn 14103 df-fg 14105 df-metu 14106 df-cnfld 14113 df-zring 14147 | 
| This theorem is referenced by: zrhval2 14175 zrhrhmb 14178 | 
| Copyright terms: Public domain | W3C validator |