![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulgrhm2 | GIF version |
Description: The powers of the element 1 give the unique ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
Ref | Expression |
---|---|
mulgghm2.m | ⊢ · = (.g‘𝑅) |
mulgghm2.f | ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) |
mulgrhm.1 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
mulgrhm2 | ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringbas 14095 | . . . . . . . . . 10 ⊢ ℤ = (Base‘ℤring) | |
2 | eqid 2193 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | rhmf 13662 | . . . . . . . . 9 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓:ℤ⟶(Base‘𝑅)) |
4 | 3 | adantl 277 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓:ℤ⟶(Base‘𝑅)) |
5 | 4 | feqmptd 5611 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑓‘𝑛))) |
6 | rhmghm 13661 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ (ℤring GrpHom 𝑅)) | |
7 | 6 | ad2antlr 489 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑓 ∈ (ℤring GrpHom 𝑅)) |
8 | simpr 110 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
9 | 1zzd 9347 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ) | |
10 | eqid 2193 | . . . . . . . . . . 11 ⊢ (.g‘ℤring) = (.g‘ℤring) | |
11 | mulgghm2.m | . . . . . . . . . . 11 ⊢ · = (.g‘𝑅) | |
12 | 1, 10, 11 | ghmmulg 13329 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (ℤring GrpHom 𝑅) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1))) |
13 | 7, 8, 9, 12 | syl3anc 1249 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑛 · (𝑓‘1))) |
14 | ax-1cn 7967 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℂ | |
15 | cnfldmulg 14075 | . . . . . . . . . . . . 13 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) | |
16 | 14, 15 | mpan2 425 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) |
17 | 1z 9346 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℤ | |
18 | 16 | adantr 276 | . . . . . . . . . . . . . 14 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛 · 1)) |
19 | zringmulg 14097 | . . . . . . . . . . . . . 14 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℤring)1) = (𝑛 · 1)) | |
20 | 18, 19 | eqtr4d 2229 | . . . . . . . . . . . . 13 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1)) |
21 | 17, 20 | mpan2 425 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℂfld)1) = (𝑛(.g‘ℤring)1)) |
22 | zcn 9325 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
23 | 22 | mulridd 8038 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛) |
24 | 16, 21, 23 | 3eqtr3d 2234 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℤring)1) = 𝑛) |
25 | 24 | adantl 277 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛(.g‘ℤring)1) = 𝑛) |
26 | 25 | fveq2d 5559 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘(𝑛(.g‘ℤring)1)) = (𝑓‘𝑛)) |
27 | zring1 14100 | . . . . . . . . . . . 12 ⊢ 1 = (1r‘ℤring) | |
28 | mulgrhm.1 | . . . . . . . . . . . 12 ⊢ 1 = (1r‘𝑅) | |
29 | 27, 28 | rhm1 13666 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤring RingHom 𝑅) → (𝑓‘1) = 1 ) |
30 | 29 | ad2antlr 489 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘1) = 1 ) |
31 | 30 | oveq2d 5935 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑓‘1)) = (𝑛 · 1 )) |
32 | 13, 26, 31 | 3eqtr3d 2234 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) ∧ 𝑛 ∈ ℤ) → (𝑓‘𝑛) = (𝑛 · 1 )) |
33 | 32 | mpteq2dva 4120 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → (𝑛 ∈ ℤ ↦ (𝑓‘𝑛)) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) |
34 | 5, 33 | eqtrd 2226 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) |
35 | mulgghm2.f | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | |
36 | 34, 35 | eqtr4di 2244 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 = 𝐹) |
37 | velsn 3636 | . . . . 5 ⊢ (𝑓 ∈ {𝐹} ↔ 𝑓 = 𝐹) | |
38 | 36, 37 | sylibr 134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ (ℤring RingHom 𝑅)) → 𝑓 ∈ {𝐹}) |
39 | 38 | ex 115 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑓 ∈ (ℤring RingHom 𝑅) → 𝑓 ∈ {𝐹})) |
40 | 39 | ssrdv 3186 | . 2 ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) ⊆ {𝐹}) |
41 | 11, 35, 28 | mulgrhm 14108 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅)) |
42 | 41 | snssd 3764 | . 2 ⊢ (𝑅 ∈ Ring → {𝐹} ⊆ (ℤring RingHom 𝑅)) |
43 | 40, 42 | eqssd 3197 | 1 ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {csn 3619 ↦ cmpt 4091 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 1c1 7875 · cmul 7879 ℤcz 9320 Basecbs 12621 .gcmg 13192 GrpHom cghm 13313 1rcur 13458 Ringcrg 13495 RingHom crh 13649 ℂfldccnfld 14055 ℤringczring 14089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-tp 3627 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-map 6706 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-uz 9596 df-rp 9723 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-cj 10989 df-abs 11146 df-struct 12623 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-starv 12713 df-tset 12717 df-ple 12718 df-ds 12720 df-unif 12721 df-0g 12872 df-topgen 12874 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-mhm 13034 df-grp 13078 df-minusg 13079 df-mulg 13193 df-subg 13243 df-ghm 13314 df-cmn 13359 df-mgp 13420 df-ur 13459 df-ring 13497 df-cring 13498 df-rhm 13651 df-subrg 13718 df-bl 14045 df-mopn 14046 df-fg 14048 df-metu 14049 df-cnfld 14056 df-zring 14090 |
This theorem is referenced by: zrhval2 14118 zrhrhmb 14121 |
Copyright terms: Public domain | W3C validator |