| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgr1or2 | GIF version | ||
| Description: An edge of an undirected pseudograph has one or two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| Ref | Expression |
|---|---|
| isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| upgr1or2 | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ((𝐸‘𝐹) ≈ 1o ∨ (𝐸‘𝐹) ≈ 2o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isupgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isupgr.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | upgrfnen 15883 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 4 | 3 | ffvelcdmda 5763 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 5 | 4 | 3impa 1218 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 6 | breq1 4085 | . . . . 5 ⊢ (𝑥 = (𝐸‘𝐹) → (𝑥 ≈ 1o ↔ (𝐸‘𝐹) ≈ 1o)) | |
| 7 | breq1 4085 | . . . . 5 ⊢ (𝑥 = (𝐸‘𝐹) → (𝑥 ≈ 2o ↔ (𝐸‘𝐹) ≈ 2o)) | |
| 8 | 6, 7 | orbi12d 798 | . . . 4 ⊢ (𝑥 = (𝐸‘𝐹) → ((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) ↔ ((𝐸‘𝐹) ≈ 1o ∨ (𝐸‘𝐹) ≈ 2o))) |
| 9 | 8 | elrab 2959 | . . 3 ⊢ ((𝐸‘𝐹) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ↔ ((𝐸‘𝐹) ∈ 𝒫 𝑉 ∧ ((𝐸‘𝐹) ≈ 1o ∨ (𝐸‘𝐹) ≈ 2o))) |
| 10 | 9 | simprbi 275 | . 2 ⊢ ((𝐸‘𝐹) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} → ((𝐸‘𝐹) ≈ 1o ∨ (𝐸‘𝐹) ≈ 2o)) |
| 11 | 5, 10 | syl 14 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ((𝐸‘𝐹) ≈ 1o ∨ (𝐸‘𝐹) ≈ 2o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 {crab 2512 𝒫 cpw 3649 class class class wbr 4082 Fn wfn 5309 ‘cfv 5314 1oc1o 6545 2oc2o 6546 ≈ cen 6875 Vtxcvtx 15798 iEdgciedg 15799 UPGraphcupgr 15876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fo 5320 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-sub 8307 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-dec 9567 df-ndx 13021 df-slot 13022 df-base 13024 df-edgf 15791 df-vtx 15800 df-iedg 15801 df-upgren 15878 |
| This theorem is referenced by: upgrfi 15887 upgrex 15888 |
| Copyright terms: Public domain | W3C validator |