| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgr1or2 | GIF version | ||
| Description: An edge of an undirected pseudograph has one or two ends. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| Ref | Expression |
|---|---|
| isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| upgr1or2 | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ((𝐸‘𝐹) ≈ 1o ∨ (𝐸‘𝐹) ≈ 2o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isupgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isupgr.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | upgrfnen 15744 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 4 | 3 | ffvelcdmda 5725 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 5 | 4 | 3impa 1197 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 6 | breq1 4051 | . . . . 5 ⊢ (𝑥 = (𝐸‘𝐹) → (𝑥 ≈ 1o ↔ (𝐸‘𝐹) ≈ 1o)) | |
| 7 | breq1 4051 | . . . . 5 ⊢ (𝑥 = (𝐸‘𝐹) → (𝑥 ≈ 2o ↔ (𝐸‘𝐹) ≈ 2o)) | |
| 8 | 6, 7 | orbi12d 795 | . . . 4 ⊢ (𝑥 = (𝐸‘𝐹) → ((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) ↔ ((𝐸‘𝐹) ≈ 1o ∨ (𝐸‘𝐹) ≈ 2o))) |
| 9 | 8 | elrab 2931 | . . 3 ⊢ ((𝐸‘𝐹) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ↔ ((𝐸‘𝐹) ∈ 𝒫 𝑉 ∧ ((𝐸‘𝐹) ≈ 1o ∨ (𝐸‘𝐹) ≈ 2o))) |
| 10 | 9 | simprbi 275 | . 2 ⊢ ((𝐸‘𝐹) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} → ((𝐸‘𝐹) ≈ 1o ∨ (𝐸‘𝐹) ≈ 2o)) |
| 11 | 5, 10 | syl 14 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ((𝐸‘𝐹) ≈ 1o ∨ (𝐸‘𝐹) ≈ 2o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 {crab 2489 𝒫 cpw 3618 class class class wbr 4048 Fn wfn 5272 ‘cfv 5277 1oc1o 6505 2oc2o 6506 ≈ cen 6835 Vtxcvtx 15661 iEdgciedg 15662 UPGraphcupgr 15737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fo 5283 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-sub 8258 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-9 9115 df-n0 9309 df-dec 9518 df-ndx 12885 df-slot 12886 df-base 12888 df-edgf 15654 df-vtx 15663 df-iedg 15664 df-upgren 15739 |
| This theorem is referenced by: upgrfi 15748 upgrex 15749 |
| Copyright terms: Public domain | W3C validator |