ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ind GIF version

Theorem nn0ind 9189
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
Hypotheses
Ref Expression
nn0ind.1 (𝑥 = 0 → (𝜑𝜓))
nn0ind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nn0ind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nn0ind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nn0ind.5 𝜓
nn0ind.6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
Assertion
Ref Expression
nn0ind (𝐴 ∈ ℕ0𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nn0ind
StepHypRef Expression
1 elnn0z 9091 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
2 0z 9089 . . 3 0 ∈ ℤ
3 nn0ind.1 . . . 4 (𝑥 = 0 → (𝜑𝜓))
4 nn0ind.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜒))
5 nn0ind.3 . . . 4 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
6 nn0ind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
7 nn0ind.5 . . . . 5 𝜓
87a1i 9 . . . 4 (0 ∈ ℤ → 𝜓)
9 elnn0z 9091 . . . . . 6 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))
10 nn0ind.6 . . . . . 6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
119, 10sylbir 134 . . . . 5 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒𝜃))
12113adant1 1000 . . . 4 ((0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒𝜃))
133, 4, 5, 6, 8, 12uzind 9186 . . 3 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏)
142, 13mp3an1 1303 . 2 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏)
151, 14sylbi 120 1 (𝐴 ∈ ℕ0𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481   class class class wbr 3937  (class class class)co 5782  0cc0 7644  1c1 7645   + caddc 7647  cle 7825  0cn0 9001  cz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079
This theorem is referenced by:  zindd  9193  uzaddcl  9408  frecfzennn  10230  mulexp  10363  expadd  10366  expmul  10369  leexp1a  10379  bernneq  10443  faccl  10513  facdiv  10516  facwordi  10518  faclbnd  10519  faclbnd6  10522  facubnd  10523  bccl  10545  cjexp  10697  absexp  10883  binom  11285  bcxmas  11290  demoivreALT  11516  odd2np1lem  11605  alginv  11764  prmfac1  11866  ennnfonelemhf1o  11962  expcncf  12800
  Copyright terms: Public domain W3C validator