Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matepm2cl | Structured version Visualization version GIF version |
Description: Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
matepmcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matepmcl.b | ⊢ 𝐵 = (Base‘𝐴) |
matepmcl.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
Ref | Expression |
---|---|
matepm2cl | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 (𝑛𝑀(𝑄‘𝑛)) ∈ (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ 𝑁) → 𝑛 ∈ 𝑁) | |
2 | eqid 2736 | . . . . 5 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
3 | matepmcl.p | . . . . 5 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
4 | 2, 3 | symgfv 19075 | . . . 4 ⊢ ((𝑄 ∈ 𝑃 ∧ 𝑛 ∈ 𝑁) → (𝑄‘𝑛) ∈ 𝑁) |
5 | 4 | 3ad2antl2 1185 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ 𝑁) → (𝑄‘𝑛) ∈ 𝑁) |
6 | matepmcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
7 | 6 | eleq2i 2828 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
8 | 7 | biimpi 215 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
9 | 8 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ (Base‘𝐴)) |
10 | 9 | adantr 481 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
11 | matepmcl.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
12 | eqid 2736 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | 11, 12 | matecl 21672 | . . 3 ⊢ ((𝑛 ∈ 𝑁 ∧ (𝑄‘𝑛) ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑛𝑀(𝑄‘𝑛)) ∈ (Base‘𝑅)) |
14 | 1, 5, 10, 13 | syl3anc 1370 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ 𝑁) → (𝑛𝑀(𝑄‘𝑛)) ∈ (Base‘𝑅)) |
15 | 14 | ralrimiva 3139 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 (𝑛𝑀(𝑄‘𝑛)) ∈ (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 SymGrpcsymg 19062 Ringcrg 19870 Mat cmat 21652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-ot 4581 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-supp 8040 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-ixp 8749 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-fsupp 9219 df-sup 9291 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-fz 13333 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-sca 17067 df-vsca 17068 df-ip 17069 df-tset 17070 df-ple 17071 df-ds 17073 df-hom 17075 df-cco 17076 df-0g 17241 df-prds 17247 df-pws 17249 df-efmnd 18596 df-symg 19063 df-sra 20532 df-rgmod 20533 df-dsmm 21037 df-frlm 21052 df-mat 21653 |
This theorem is referenced by: madetsmelbas2 21712 smadiadetlem0 21908 |
Copyright terms: Public domain | W3C validator |