MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matepmcl Structured version   Visualization version   GIF version

Theorem matepmcl 21313
Description: Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
matepmcl.a 𝐴 = (𝑁 Mat 𝑅)
matepmcl.b 𝐵 = (Base‘𝐴)
matepmcl.p 𝑃 = (Base‘(SymGrp‘𝑁))
Assertion
Ref Expression
matepmcl ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑃,𝑛   𝑅,𝑛   𝑄,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑁(𝑛)

Proof of Theorem matepmcl
StepHypRef Expression
1 eqid 2736 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 matepmcl.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
31, 2symgfv 18726 . . . 4 ((𝑄𝑃𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
433ad2antl2 1188 . . 3 (((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) ∧ 𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
5 simpr 488 . . 3 (((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) ∧ 𝑛𝑁) → 𝑛𝑁)
6 matepmcl.b . . . . . . 7 𝐵 = (Base‘𝐴)
76eleq2i 2822 . . . . . 6 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
87biimpi 219 . . . . 5 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
983ad2ant3 1137 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → 𝑀 ∈ (Base‘𝐴))
109adantr 484 . . 3 (((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) ∧ 𝑛𝑁) → 𝑀 ∈ (Base‘𝐴))
11 matepmcl.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
12 eqid 2736 . . . 4 (Base‘𝑅) = (Base‘𝑅)
1311, 12matecl 21276 . . 3 (((𝑄𝑛) ∈ 𝑁𝑛𝑁𝑀 ∈ (Base‘𝐴)) → ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
144, 5, 10, 13syl3anc 1373 . 2 (((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) ∧ 𝑛𝑁) → ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
1514ralrimiva 3095 1 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  cfv 6358  (class class class)co 7191  Basecbs 16666  SymGrpcsymg 18713  Ringcrg 19516   Mat cmat 21258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-ot 4536  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-hom 16773  df-cco 16774  df-0g 16900  df-prds 16906  df-pws 16908  df-efmnd 18250  df-symg 18714  df-sra 20163  df-rgmod 20164  df-dsmm 20648  df-frlm 20663  df-mat 21259
This theorem is referenced by:  madetsmelbas  21315  m2detleiblem2  21479  m2detleiblem3  21480  m2detleiblem4  21481
  Copyright terms: Public domain W3C validator