MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matepmcl Structured version   Visualization version   GIF version

Theorem matepmcl 22397
Description: Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
matepmcl.a 𝐴 = (𝑁 Mat 𝑅)
matepmcl.b 𝐵 = (Base‘𝐴)
matepmcl.p 𝑃 = (Base‘(SymGrp‘𝑁))
Assertion
Ref Expression
matepmcl ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑃,𝑛   𝑅,𝑛   𝑄,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑁(𝑛)

Proof of Theorem matepmcl
StepHypRef Expression
1 eqid 2733 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 matepmcl.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
31, 2symgfv 19300 . . . 4 ((𝑄𝑃𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
433ad2antl2 1187 . . 3 (((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) ∧ 𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
5 simpr 484 . . 3 (((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) ∧ 𝑛𝑁) → 𝑛𝑁)
6 matepmcl.b . . . . . . 7 𝐵 = (Base‘𝐴)
76eleq2i 2825 . . . . . 6 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
87biimpi 216 . . . . 5 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
983ad2ant3 1135 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → 𝑀 ∈ (Base‘𝐴))
109adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) ∧ 𝑛𝑁) → 𝑀 ∈ (Base‘𝐴))
11 matepmcl.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
12 eqid 2733 . . . 4 (Base‘𝑅) = (Base‘𝑅)
1311, 12matecl 22360 . . 3 (((𝑄𝑛) ∈ 𝑁𝑛𝑁𝑀 ∈ (Base‘𝐴)) → ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
144, 5, 10, 13syl3anc 1373 . 2 (((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) ∧ 𝑛𝑁) → ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
1514ralrimiva 3125 1 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cfv 6489  (class class class)co 7355  Basecbs 17127  SymGrpcsymg 19289  Ringcrg 20159   Mat cmat 22342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-hom 17192  df-cco 17193  df-0g 17352  df-prds 17358  df-pws 17360  df-efmnd 18785  df-symg 19290  df-sra 21116  df-rgmod 21117  df-dsmm 21678  df-frlm 21693  df-mat 22343
This theorem is referenced by:  madetsmelbas  22399  m2detleiblem2  22563  m2detleiblem3  22564  m2detleiblem4  22565
  Copyright terms: Public domain W3C validator