![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matepmcl | Structured version Visualization version GIF version |
Description: Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
matepmcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matepmcl.b | ⊢ 𝐵 = (Base‘𝐴) |
matepmcl.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
Ref | Expression |
---|---|
matepmcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . . 5 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | matepmcl.p | . . . . 5 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
3 | 1, 2 | symgfv 18201 | . . . 4 ⊢ ((𝑄 ∈ 𝑃 ∧ 𝑛 ∈ 𝑁) → (𝑄‘𝑛) ∈ 𝑁) |
4 | 3 | 3ad2antl2 1194 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ 𝑁) → (𝑄‘𝑛) ∈ 𝑁) |
5 | simpr 479 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ 𝑁) → 𝑛 ∈ 𝑁) | |
6 | matepmcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
7 | 6 | eleq2i 2851 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
8 | 7 | biimpi 208 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
9 | 8 | 3ad2ant3 1126 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ (Base‘𝐴)) |
10 | 9 | adantr 474 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
11 | matepmcl.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
12 | eqid 2778 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | 11, 12 | matecl 20646 | . . 3 ⊢ (((𝑄‘𝑛) ∈ 𝑁 ∧ 𝑛 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
14 | 4, 5, 10, 13 | syl3anc 1439 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ 𝑁) → ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
15 | 14 | ralrimiva 3148 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ‘cfv 6137 (class class class)co 6924 Basecbs 16266 SymGrpcsymg 18191 Ringcrg 18945 Mat cmat 20628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-ot 4407 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-sup 8638 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-fz 12649 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-mulr 16363 df-sca 16365 df-vsca 16366 df-ip 16367 df-tset 16368 df-ple 16369 df-ds 16371 df-hom 16373 df-cco 16374 df-0g 16499 df-prds 16505 df-pws 16507 df-symg 18192 df-sra 19580 df-rgmod 19581 df-dsmm 20486 df-frlm 20501 df-mat 20629 |
This theorem is referenced by: madetsmelbas 20686 m2detleiblem2 20850 m2detleiblem3 20851 m2detleiblem4 20852 |
Copyright terms: Public domain | W3C validator |