MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolydif Structured version   Visualization version   GIF version

Theorem bpolydif 15394
Description: Calculate the difference between successive values of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 26-May-2014.)
Assertion
Ref Expression
bpolydif ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℂ) → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1))))

Proof of Theorem bpolydif
Dummy variables 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7149 . . . . . 6 (𝑛 = 𝑘 → (𝑛 BernPoly (𝑋 + 1)) = (𝑘 BernPoly (𝑋 + 1)))
2 oveq1 7149 . . . . . 6 (𝑛 = 𝑘 → (𝑛 BernPoly 𝑋) = (𝑘 BernPoly 𝑋))
31, 2oveq12d 7160 . . . . 5 (𝑛 = 𝑘 → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)))
4 id 22 . . . . . 6 (𝑛 = 𝑘𝑛 = 𝑘)
5 oveq1 7149 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 − 1) = (𝑘 − 1))
65oveq2d 7158 . . . . . 6 (𝑛 = 𝑘 → (𝑋↑(𝑛 − 1)) = (𝑋↑(𝑘 − 1)))
74, 6oveq12d 7160 . . . . 5 (𝑛 = 𝑘 → (𝑛 · (𝑋↑(𝑛 − 1))) = (𝑘 · (𝑋↑(𝑘 − 1))))
83, 7eqeq12d 2837 . . . 4 (𝑛 = 𝑘 → (((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1))) ↔ ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))))
98imbi2d 343 . . 3 (𝑛 = 𝑘 → ((𝑋 ∈ ℂ → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1)))) ↔ (𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1))))))
10 oveq1 7149 . . . . . 6 (𝑛 = 𝑁 → (𝑛 BernPoly (𝑋 + 1)) = (𝑁 BernPoly (𝑋 + 1)))
11 oveq1 7149 . . . . . 6 (𝑛 = 𝑁 → (𝑛 BernPoly 𝑋) = (𝑁 BernPoly 𝑋))
1210, 11oveq12d 7160 . . . . 5 (𝑛 = 𝑁 → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)))
13 id 22 . . . . . 6 (𝑛 = 𝑁𝑛 = 𝑁)
14 oveq1 7149 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
1514oveq2d 7158 . . . . . 6 (𝑛 = 𝑁 → (𝑋↑(𝑛 − 1)) = (𝑋↑(𝑁 − 1)))
1613, 15oveq12d 7160 . . . . 5 (𝑛 = 𝑁 → (𝑛 · (𝑋↑(𝑛 − 1))) = (𝑁 · (𝑋↑(𝑁 − 1))))
1712, 16eqeq12d 2837 . . . 4 (𝑛 = 𝑁 → (((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1))) ↔ ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))))
1817imbi2d 343 . . 3 (𝑛 = 𝑁 → ((𝑋 ∈ ℂ → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1)))) ↔ (𝑋 ∈ ℂ → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1))))))
19 simp1 1132 . . . . 5 ((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) → 𝑛 ∈ ℕ)
20 simp3 1134 . . . . 5 ((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
21 simpl3 1189 . . . . . 6 (((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) ∧ 𝑚 ∈ (1...(𝑛 − 1))) → 𝑋 ∈ ℂ)
22 oveq1 7149 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑘 BernPoly (𝑋 + 1)) = (𝑚 BernPoly (𝑋 + 1)))
23 oveq1 7149 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑘 BernPoly 𝑋) = (𝑚 BernPoly 𝑋))
2422, 23oveq12d 7160 . . . . . . . . . 10 (𝑘 = 𝑚 → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)))
25 id 22 . . . . . . . . . . 11 (𝑘 = 𝑚𝑘 = 𝑚)
26 oveq1 7149 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑘 − 1) = (𝑚 − 1))
2726oveq2d 7158 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑋↑(𝑘 − 1)) = (𝑋↑(𝑚 − 1)))
2825, 27oveq12d 7160 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝑘 · (𝑋↑(𝑘 − 1))) = (𝑚 · (𝑋↑(𝑚 − 1))))
2924, 28eqeq12d 2837 . . . . . . . . 9 (𝑘 = 𝑚 → (((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1))) ↔ ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1)))))
3029imbi2d 343 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ↔ (𝑋 ∈ ℂ → ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1))))))
3130rspccva 3614 . . . . . . 7 ((∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑚 ∈ (1...(𝑛 − 1))) → (𝑋 ∈ ℂ → ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1)))))
32313ad2antl2 1182 . . . . . 6 (((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) ∧ 𝑚 ∈ (1...(𝑛 − 1))) → (𝑋 ∈ ℂ → ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1)))))
3321, 32mpd 15 . . . . 5 (((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) ∧ 𝑚 ∈ (1...(𝑛 − 1))) → ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1))))
3419, 20, 33bpolydiflem 15393 . . . 4 ((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1))))
35343exp 1115 . . 3 (𝑛 ∈ ℕ → (∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) → (𝑋 ∈ ℂ → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1))))))
369, 18, 35nnsinds 13346 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ℂ → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))))
3736imp 409 1 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℂ) → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  (class class class)co 7142  cc 10521  1c1 10524   + caddc 10526   · cmul 10528  cmin 10856  cn 11624  ...cfz 12882  cexp 13419   BernPoly cbp 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-inf2 9090  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-se 5501  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8892  df-oi 8960  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-n0 11885  df-z 11969  df-uz 12231  df-rp 12377  df-fz 12883  df-fzo 13024  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-clim 14830  df-sum 15028  df-bpoly 15386
This theorem is referenced by:  fsumkthpow  15395
  Copyright terms: Public domain W3C validator