MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolydif Structured version   Visualization version   GIF version

Theorem bpolydif 15693
Description: Calculate the difference between successive values of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 26-May-2014.)
Assertion
Ref Expression
bpolydif ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℂ) → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1))))

Proof of Theorem bpolydif
Dummy variables 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . . . 6 (𝑛 = 𝑘 → (𝑛 BernPoly (𝑋 + 1)) = (𝑘 BernPoly (𝑋 + 1)))
2 oveq1 7262 . . . . . 6 (𝑛 = 𝑘 → (𝑛 BernPoly 𝑋) = (𝑘 BernPoly 𝑋))
31, 2oveq12d 7273 . . . . 5 (𝑛 = 𝑘 → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)))
4 id 22 . . . . . 6 (𝑛 = 𝑘𝑛 = 𝑘)
5 oveq1 7262 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 − 1) = (𝑘 − 1))
65oveq2d 7271 . . . . . 6 (𝑛 = 𝑘 → (𝑋↑(𝑛 − 1)) = (𝑋↑(𝑘 − 1)))
74, 6oveq12d 7273 . . . . 5 (𝑛 = 𝑘 → (𝑛 · (𝑋↑(𝑛 − 1))) = (𝑘 · (𝑋↑(𝑘 − 1))))
83, 7eqeq12d 2754 . . . 4 (𝑛 = 𝑘 → (((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1))) ↔ ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))))
98imbi2d 340 . . 3 (𝑛 = 𝑘 → ((𝑋 ∈ ℂ → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1)))) ↔ (𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1))))))
10 oveq1 7262 . . . . . 6 (𝑛 = 𝑁 → (𝑛 BernPoly (𝑋 + 1)) = (𝑁 BernPoly (𝑋 + 1)))
11 oveq1 7262 . . . . . 6 (𝑛 = 𝑁 → (𝑛 BernPoly 𝑋) = (𝑁 BernPoly 𝑋))
1210, 11oveq12d 7273 . . . . 5 (𝑛 = 𝑁 → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)))
13 id 22 . . . . . 6 (𝑛 = 𝑁𝑛 = 𝑁)
14 oveq1 7262 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
1514oveq2d 7271 . . . . . 6 (𝑛 = 𝑁 → (𝑋↑(𝑛 − 1)) = (𝑋↑(𝑁 − 1)))
1613, 15oveq12d 7273 . . . . 5 (𝑛 = 𝑁 → (𝑛 · (𝑋↑(𝑛 − 1))) = (𝑁 · (𝑋↑(𝑁 − 1))))
1712, 16eqeq12d 2754 . . . 4 (𝑛 = 𝑁 → (((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1))) ↔ ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))))
1817imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝑋 ∈ ℂ → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1)))) ↔ (𝑋 ∈ ℂ → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1))))))
19 simp1 1134 . . . . 5 ((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) → 𝑛 ∈ ℕ)
20 simp3 1136 . . . . 5 ((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
21 simpl3 1191 . . . . . 6 (((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) ∧ 𝑚 ∈ (1...(𝑛 − 1))) → 𝑋 ∈ ℂ)
22 oveq1 7262 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑘 BernPoly (𝑋 + 1)) = (𝑚 BernPoly (𝑋 + 1)))
23 oveq1 7262 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑘 BernPoly 𝑋) = (𝑚 BernPoly 𝑋))
2422, 23oveq12d 7273 . . . . . . . . . 10 (𝑘 = 𝑚 → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)))
25 id 22 . . . . . . . . . . 11 (𝑘 = 𝑚𝑘 = 𝑚)
26 oveq1 7262 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑘 − 1) = (𝑚 − 1))
2726oveq2d 7271 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑋↑(𝑘 − 1)) = (𝑋↑(𝑚 − 1)))
2825, 27oveq12d 7273 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝑘 · (𝑋↑(𝑘 − 1))) = (𝑚 · (𝑋↑(𝑚 − 1))))
2924, 28eqeq12d 2754 . . . . . . . . 9 (𝑘 = 𝑚 → (((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1))) ↔ ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1)))))
3029imbi2d 340 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ↔ (𝑋 ∈ ℂ → ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1))))))
3130rspccva 3551 . . . . . . 7 ((∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑚 ∈ (1...(𝑛 − 1))) → (𝑋 ∈ ℂ → ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1)))))
32313ad2antl2 1184 . . . . . 6 (((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) ∧ 𝑚 ∈ (1...(𝑛 − 1))) → (𝑋 ∈ ℂ → ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1)))))
3321, 32mpd 15 . . . . 5 (((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) ∧ 𝑚 ∈ (1...(𝑛 − 1))) → ((𝑚 BernPoly (𝑋 + 1)) − (𝑚 BernPoly 𝑋)) = (𝑚 · (𝑋↑(𝑚 − 1))))
3419, 20, 33bpolydiflem 15692 . . . 4 ((𝑛 ∈ ℕ ∧ ∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ∧ 𝑋 ∈ ℂ) → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1))))
35343exp 1117 . . 3 (𝑛 ∈ ℕ → (∀𝑘 ∈ (1...(𝑛 − 1))(𝑋 ∈ ℂ → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) → (𝑋 ∈ ℂ → ((𝑛 BernPoly (𝑋 + 1)) − (𝑛 BernPoly 𝑋)) = (𝑛 · (𝑋↑(𝑛 − 1))))))
369, 18, 35nnsinds 13636 . 2 (𝑁 ∈ ℕ → (𝑋 ∈ ℂ → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))))
3736imp 406 1 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℂ) → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  cn 11903  ...cfz 13168  cexp 13710   BernPoly cbp 15684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-bpoly 15685
This theorem is referenced by:  fsumkthpow  15694
  Copyright terms: Public domain W3C validator