| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmsslss2 | Structured version Visualization version GIF version | ||
| Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 23-Jun-2019.) |
| Ref | Expression |
|---|---|
| frlmsslss.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| frlmsslss.u | ⊢ 𝑈 = (LSubSp‘𝑌) |
| frlmsslss.b | ⊢ 𝐵 = (Base‘𝑌) |
| frlmsslss.z | ⊢ 0 = (0g‘𝑅) |
| frlmsslss2.c | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} |
| Ref | Expression |
|---|---|
| frlmsslss2 | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmsslss2.c | . . 3 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} | |
| 2 | frlmsslss.y | . . . . . . . . 9 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 3 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | frlmsslss.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑌) | |
| 5 | 2, 3, 4 | frlmbasf 21706 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥:𝐼⟶(Base‘𝑅)) |
| 6 | 5 | 3ad2antl2 1187 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥:𝐼⟶(Base‘𝑅)) |
| 7 | 6 | ffnd 6660 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥 Fn 𝐼) |
| 8 | simpl3 1194 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝐽 ⊆ 𝐼) | |
| 9 | undif 4431 | . . . . . . . 8 ⊢ (𝐽 ⊆ 𝐼 ↔ (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) | |
| 10 | 8, 9 | sylib 218 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) |
| 11 | 10 | fneq2d 6583 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → (𝑥 Fn (𝐽 ∪ (𝐼 ∖ 𝐽)) ↔ 𝑥 Fn 𝐼)) |
| 12 | 7, 11 | mpbird 257 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥 Fn (𝐽 ∪ (𝐼 ∖ 𝐽))) |
| 13 | simpr 484 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 14 | frlmsslss.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 15 | 14 | fvexi 6845 | . . . . . 6 ⊢ 0 ∈ V |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 0 ∈ V) |
| 17 | disjdif 4421 | . . . . . 6 ⊢ (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅ | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅) |
| 19 | fnsuppres 8130 | . . . . 5 ⊢ ((𝑥 Fn (𝐽 ∪ (𝐼 ∖ 𝐽)) ∧ (𝑥 ∈ 𝐵 ∧ 0 ∈ V) ∧ (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 }))) | |
| 20 | 12, 13, 16, 18, 19 | syl121anc 1377 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 }))) |
| 21 | 20 | rabbidva 3402 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })}) |
| 22 | 1, 21 | eqtrid 2780 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })}) |
| 23 | difssd 4086 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐼 ∖ 𝐽) ⊆ 𝐼) | |
| 24 | frlmsslss.u | . . . 4 ⊢ 𝑈 = (LSubSp‘𝑌) | |
| 25 | eqid 2733 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} | |
| 26 | 2, 24, 4, 14, 25 | frlmsslss 21720 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ (𝐼 ∖ 𝐽) ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} ∈ 𝑈) |
| 27 | 23, 26 | syld3an3 1411 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} ∈ 𝑈) |
| 28 | 22, 27 | eqeltrd 2833 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 {csn 4577 × cxp 5619 ↾ cres 5623 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 supp csupp 8099 Basecbs 17127 0gc0g 17350 Ringcrg 20159 LSubSpclss 20873 freeLMod cfrlm 21692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-prds 17358 df-pws 17360 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-ghm 19133 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-subrg 20494 df-lmod 20804 df-lss 20874 df-lmhm 20965 df-sra 21116 df-rgmod 21117 df-dsmm 21678 df-frlm 21693 |
| This theorem is referenced by: frlmssuvc1 21740 frlmsslsp 21742 |
| Copyright terms: Public domain | W3C validator |