![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmsslss2 | Structured version Visualization version GIF version |
Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 23-Jun-2019.) |
Ref | Expression |
---|---|
frlmsslss.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmsslss.u | ⊢ 𝑈 = (LSubSp‘𝑌) |
frlmsslss.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmsslss.z | ⊢ 0 = (0g‘𝑅) |
frlmsslss2.c | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} |
Ref | Expression |
---|---|
frlmsslss2 | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmsslss2.c | . . 3 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} | |
2 | frlmsslss.y | . . . . . . . . 9 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
3 | eqid 2724 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | frlmsslss.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑌) | |
5 | 2, 3, 4 | frlmbasf 21623 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥:𝐼⟶(Base‘𝑅)) |
6 | 5 | 3ad2antl2 1183 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥:𝐼⟶(Base‘𝑅)) |
7 | 6 | ffnd 6708 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥 Fn 𝐼) |
8 | simpl3 1190 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝐽 ⊆ 𝐼) | |
9 | undif 4473 | . . . . . . . 8 ⊢ (𝐽 ⊆ 𝐼 ↔ (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) | |
10 | 8, 9 | sylib 217 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) |
11 | 10 | fneq2d 6633 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → (𝑥 Fn (𝐽 ∪ (𝐼 ∖ 𝐽)) ↔ 𝑥 Fn 𝐼)) |
12 | 7, 11 | mpbird 257 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥 Fn (𝐽 ∪ (𝐼 ∖ 𝐽))) |
13 | simpr 484 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
14 | frlmsslss.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
15 | 14 | fvexi 6895 | . . . . . 6 ⊢ 0 ∈ V |
16 | 15 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 0 ∈ V) |
17 | disjdif 4463 | . . . . . 6 ⊢ (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅ | |
18 | 17 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅) |
19 | fnsuppres 8170 | . . . . 5 ⊢ ((𝑥 Fn (𝐽 ∪ (𝐼 ∖ 𝐽)) ∧ (𝑥 ∈ 𝐵 ∧ 0 ∈ V) ∧ (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 }))) | |
20 | 12, 13, 16, 18, 19 | syl121anc 1372 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 }))) |
21 | 20 | rabbidva 3431 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })}) |
22 | 1, 21 | eqtrid 2776 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })}) |
23 | difssd 4124 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐼 ∖ 𝐽) ⊆ 𝐼) | |
24 | frlmsslss.u | . . . 4 ⊢ 𝑈 = (LSubSp‘𝑌) | |
25 | eqid 2724 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} | |
26 | 2, 24, 4, 14, 25 | frlmsslss 21637 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ (𝐼 ∖ 𝐽) ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} ∈ 𝑈) |
27 | 23, 26 | syld3an3 1406 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} ∈ 𝑈) |
28 | 22, 27 | eqeltrd 2825 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {crab 3424 Vcvv 3466 ∖ cdif 3937 ∪ cun 3938 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 {csn 4620 × cxp 5664 ↾ cres 5668 Fn wfn 6528 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 supp csupp 8140 Basecbs 17143 0gc0g 17384 Ringcrg 20128 LSubSpclss 20768 freeLMod cfrlm 21609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17386 df-prds 17392 df-pws 17394 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-mhm 18703 df-submnd 18704 df-grp 18856 df-minusg 18857 df-sbg 18858 df-subg 19040 df-ghm 19129 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-subrg 20461 df-lmod 20698 df-lss 20769 df-lmhm 20860 df-sra 21011 df-rgmod 21012 df-dsmm 21595 df-frlm 21610 |
This theorem is referenced by: frlmssuvc1 21657 frlmsslsp 21659 |
Copyright terms: Public domain | W3C validator |