MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsslss2 Structured version   Visualization version   GIF version

Theorem frlmsslss2 21721
Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmsslss.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsslss.u 𝑈 = (LSubSp‘𝑌)
frlmsslss.b 𝐵 = (Base‘𝑌)
frlmsslss.z 0 = (0g𝑅)
frlmsslss2.c 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
Assertion
Ref Expression
frlmsslss2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝐽   𝑥,𝑅   𝑥,𝑈   𝑥, 0   𝑥,𝑉   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmsslss2
StepHypRef Expression
1 frlmsslss2.c . . 3 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
2 frlmsslss.y . . . . . . . . 9 𝑌 = (𝑅 freeLMod 𝐼)
3 eqid 2733 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4 frlmsslss.b . . . . . . . . 9 𝐵 = (Base‘𝑌)
52, 3, 4frlmbasf 21706 . . . . . . . 8 ((𝐼𝑉𝑥𝐵) → 𝑥:𝐼⟶(Base‘𝑅))
653ad2antl2 1187 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝑥:𝐼⟶(Base‘𝑅))
76ffnd 6660 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝑥 Fn 𝐼)
8 simpl3 1194 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝐽𝐼)
9 undif 4431 . . . . . . . 8 (𝐽𝐼 ↔ (𝐽 ∪ (𝐼𝐽)) = 𝐼)
108, 9sylib 218 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → (𝐽 ∪ (𝐼𝐽)) = 𝐼)
1110fneq2d 6583 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → (𝑥 Fn (𝐽 ∪ (𝐼𝐽)) ↔ 𝑥 Fn 𝐼))
127, 11mpbird 257 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝑥 Fn (𝐽 ∪ (𝐼𝐽)))
13 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝑥𝐵)
14 frlmsslss.z . . . . . . 7 0 = (0g𝑅)
1514fvexi 6845 . . . . . 6 0 ∈ V
1615a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 0 ∈ V)
17 disjdif 4421 . . . . . 6 (𝐽 ∩ (𝐼𝐽)) = ∅
1817a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → (𝐽 ∩ (𝐼𝐽)) = ∅)
19 fnsuppres 8130 . . . . 5 ((𝑥 Fn (𝐽 ∪ (𝐼𝐽)) ∧ (𝑥𝐵0 ∈ V) ∧ (𝐽 ∩ (𝐼𝐽)) = ∅) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })))
2012, 13, 16, 18, 19syl121anc 1377 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })))
2120rabbidva 3402 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} = {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })})
221, 21eqtrid 2780 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶 = {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })})
23 difssd 4086 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐼𝐽) ⊆ 𝐼)
24 frlmsslss.u . . . 4 𝑈 = (LSubSp‘𝑌)
25 eqid 2733 . . . 4 {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })} = {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })}
262, 24, 4, 14, 25frlmsslss 21720 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉 ∧ (𝐼𝐽) ⊆ 𝐼) → {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })} ∈ 𝑈)
2723, 26syld3an3 1411 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })} ∈ 𝑈)
2822, 27eqeltrd 2833 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282  {csn 4577   × cxp 5619  cres 5623   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355   supp csupp 8099  Basecbs 17127  0gc0g 17350  Ringcrg 20159  LSubSpclss 20873   freeLMod cfrlm 21692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-hom 17192  df-cco 17193  df-0g 17352  df-prds 17358  df-pws 17360  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-subg 19044  df-ghm 19133  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-subrg 20494  df-lmod 20804  df-lss 20874  df-lmhm 20965  df-sra 21116  df-rgmod 21117  df-dsmm 21678  df-frlm 21693
This theorem is referenced by:  frlmssuvc1  21740  frlmsslsp  21742
  Copyright terms: Public domain W3C validator