| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmsslss2 | Structured version Visualization version GIF version | ||
| Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 23-Jun-2019.) |
| Ref | Expression |
|---|---|
| frlmsslss.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| frlmsslss.u | ⊢ 𝑈 = (LSubSp‘𝑌) |
| frlmsslss.b | ⊢ 𝐵 = (Base‘𝑌) |
| frlmsslss.z | ⊢ 0 = (0g‘𝑅) |
| frlmsslss2.c | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} |
| Ref | Expression |
|---|---|
| frlmsslss2 | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmsslss2.c | . . 3 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} | |
| 2 | frlmsslss.y | . . . . . . . . 9 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 3 | eqid 2735 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | frlmsslss.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑌) | |
| 5 | 2, 3, 4 | frlmbasf 21720 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥:𝐼⟶(Base‘𝑅)) |
| 6 | 5 | 3ad2antl2 1187 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥:𝐼⟶(Base‘𝑅)) |
| 7 | 6 | ffnd 6707 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥 Fn 𝐼) |
| 8 | simpl3 1194 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝐽 ⊆ 𝐼) | |
| 9 | undif 4457 | . . . . . . . 8 ⊢ (𝐽 ⊆ 𝐼 ↔ (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) | |
| 10 | 8, 9 | sylib 218 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) |
| 11 | 10 | fneq2d 6632 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → (𝑥 Fn (𝐽 ∪ (𝐼 ∖ 𝐽)) ↔ 𝑥 Fn 𝐼)) |
| 12 | 7, 11 | mpbird 257 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥 Fn (𝐽 ∪ (𝐼 ∖ 𝐽))) |
| 13 | simpr 484 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 14 | frlmsslss.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 15 | 14 | fvexi 6890 | . . . . . 6 ⊢ 0 ∈ V |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 0 ∈ V) |
| 17 | disjdif 4447 | . . . . . 6 ⊢ (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅ | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅) |
| 19 | fnsuppres 8190 | . . . . 5 ⊢ ((𝑥 Fn (𝐽 ∪ (𝐼 ∖ 𝐽)) ∧ (𝑥 ∈ 𝐵 ∧ 0 ∈ V) ∧ (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 }))) | |
| 20 | 12, 13, 16, 18, 19 | syl121anc 1377 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 }))) |
| 21 | 20 | rabbidva 3422 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })}) |
| 22 | 1, 21 | eqtrid 2782 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })}) |
| 23 | difssd 4112 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐼 ∖ 𝐽) ⊆ 𝐼) | |
| 24 | frlmsslss.u | . . . 4 ⊢ 𝑈 = (LSubSp‘𝑌) | |
| 25 | eqid 2735 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} | |
| 26 | 2, 24, 4, 14, 25 | frlmsslss 21734 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ (𝐼 ∖ 𝐽) ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} ∈ 𝑈) |
| 27 | 23, 26 | syld3an3 1411 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} ∈ 𝑈) |
| 28 | 22, 27 | eqeltrd 2834 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ∖ cdif 3923 ∪ cun 3924 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 × cxp 5652 ↾ cres 5656 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 supp csupp 8159 Basecbs 17228 0gc0g 17453 Ringcrg 20193 LSubSpclss 20888 freeLMod cfrlm 21706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-pws 17463 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-ghm 19196 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lmhm 20980 df-sra 21131 df-rgmod 21132 df-dsmm 21692 df-frlm 21707 |
| This theorem is referenced by: frlmssuvc1 21754 frlmsslsp 21756 |
| Copyright terms: Public domain | W3C validator |