Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmsslss2 | Structured version Visualization version GIF version |
Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 23-Jun-2019.) |
Ref | Expression |
---|---|
frlmsslss.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmsslss.u | ⊢ 𝑈 = (LSubSp‘𝑌) |
frlmsslss.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmsslss.z | ⊢ 0 = (0g‘𝑅) |
frlmsslss2.c | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} |
Ref | Expression |
---|---|
frlmsslss2 | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmsslss2.c | . . 3 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} | |
2 | frlmsslss.y | . . . . . . . . 9 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
3 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | frlmsslss.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑌) | |
5 | 2, 3, 4 | frlmbasf 20877 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥:𝐼⟶(Base‘𝑅)) |
6 | 5 | 3ad2antl2 1184 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥:𝐼⟶(Base‘𝑅)) |
7 | 6 | ffnd 6585 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥 Fn 𝐼) |
8 | simpl3 1191 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝐽 ⊆ 𝐼) | |
9 | undif 4412 | . . . . . . . 8 ⊢ (𝐽 ⊆ 𝐼 ↔ (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) | |
10 | 8, 9 | sylib 217 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) |
11 | 10 | fneq2d 6511 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → (𝑥 Fn (𝐽 ∪ (𝐼 ∖ 𝐽)) ↔ 𝑥 Fn 𝐼)) |
12 | 7, 11 | mpbird 256 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥 Fn (𝐽 ∪ (𝐼 ∖ 𝐽))) |
13 | simpr 484 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
14 | frlmsslss.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
15 | 14 | fvexi 6770 | . . . . . 6 ⊢ 0 ∈ V |
16 | 15 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → 0 ∈ V) |
17 | disjdif 4402 | . . . . . 6 ⊢ (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅ | |
18 | 17 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅) |
19 | fnsuppres 7978 | . . . . 5 ⊢ ((𝑥 Fn (𝐽 ∪ (𝐼 ∖ 𝐽)) ∧ (𝑥 ∈ 𝐵 ∧ 0 ∈ V) ∧ (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 }))) | |
20 | 12, 13, 16, 18, 19 | syl121anc 1373 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ 𝐵) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 }))) |
21 | 20 | rabbidva 3402 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })}) |
22 | 1, 21 | eqtrid 2790 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })}) |
23 | difssd 4063 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐼 ∖ 𝐽) ⊆ 𝐼) | |
24 | frlmsslss.u | . . . 4 ⊢ 𝑈 = (LSubSp‘𝑌) | |
25 | eqid 2738 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} | |
26 | 2, 24, 4, 14, 25 | frlmsslss 20891 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ (𝐼 ∖ 𝐽) ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} ∈ 𝑈) |
27 | 23, 26 | syld3an3 1407 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ (𝐼 ∖ 𝐽)) = ((𝐼 ∖ 𝐽) × { 0 })} ∈ 𝑈) |
28 | 22, 27 | eqeltrd 2839 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 × cxp 5578 ↾ cres 5582 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 Basecbs 16840 0gc0g 17067 Ringcrg 19698 LSubSpclss 20108 freeLMod cfrlm 20863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-ghm 18747 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lmhm 20199 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 |
This theorem is referenced by: frlmssuvc1 20911 frlmsslsp 20913 |
Copyright terms: Public domain | W3C validator |