MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsslss2 Structured version   Visualization version   GIF version

Theorem frlmsslss2 20837
Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmsslss.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsslss.u 𝑈 = (LSubSp‘𝑌)
frlmsslss.b 𝐵 = (Base‘𝑌)
frlmsslss.z 0 = (0g𝑅)
frlmsslss2.c 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
Assertion
Ref Expression
frlmsslss2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝐽   𝑥,𝑅   𝑥,𝑈   𝑥, 0   𝑥,𝑉   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmsslss2
StepHypRef Expression
1 frlmsslss2.c . . 3 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
2 frlmsslss.y . . . . . . . . 9 𝑌 = (𝑅 freeLMod 𝐼)
3 eqid 2825 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4 frlmsslss.b . . . . . . . . 9 𝐵 = (Base‘𝑌)
52, 3, 4frlmbasf 20822 . . . . . . . 8 ((𝐼𝑉𝑥𝐵) → 𝑥:𝐼⟶(Base‘𝑅))
653ad2antl2 1180 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝑥:𝐼⟶(Base‘𝑅))
76ffnd 6511 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝑥 Fn 𝐼)
8 simpl3 1187 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝐽𝐼)
9 undif 4432 . . . . . . . 8 (𝐽𝐼 ↔ (𝐽 ∪ (𝐼𝐽)) = 𝐼)
108, 9sylib 219 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → (𝐽 ∪ (𝐼𝐽)) = 𝐼)
1110fneq2d 6443 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → (𝑥 Fn (𝐽 ∪ (𝐼𝐽)) ↔ 𝑥 Fn 𝐼))
127, 11mpbird 258 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝑥 Fn (𝐽 ∪ (𝐼𝐽)))
13 simpr 485 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝑥𝐵)
14 frlmsslss.z . . . . . . 7 0 = (0g𝑅)
1514fvexi 6680 . . . . . 6 0 ∈ V
1615a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 0 ∈ V)
17 disjdif 4423 . . . . . 6 (𝐽 ∩ (𝐼𝐽)) = ∅
1817a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → (𝐽 ∩ (𝐼𝐽)) = ∅)
19 fnsuppres 7851 . . . . 5 ((𝑥 Fn (𝐽 ∪ (𝐼𝐽)) ∧ (𝑥𝐵0 ∈ V) ∧ (𝐽 ∩ (𝐼𝐽)) = ∅) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })))
2012, 13, 16, 18, 19syl121anc 1369 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })))
2120rabbidva 3483 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} = {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })})
221, 21syl5eq 2872 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶 = {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })})
23 difssd 4112 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐼𝐽) ⊆ 𝐼)
24 frlmsslss.u . . . 4 𝑈 = (LSubSp‘𝑌)
25 eqid 2825 . . . 4 {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })} = {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })}
262, 24, 4, 14, 25frlmsslss 20836 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉 ∧ (𝐼𝐽) ⊆ 𝐼) → {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })} ∈ 𝑈)
2723, 26syld3an3 1403 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })} ∈ 𝑈)
2822, 27eqeltrd 2917 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  {crab 3146  Vcvv 3499  cdif 3936  cun 3937  cin 3938  wss 3939  c0 4294  {csn 4563   × cxp 5551  cres 5555   Fn wfn 6346  wf 6347  cfv 6351  (class class class)co 7151   supp csupp 7824  Basecbs 16475  0gc0g 16705  Ringcrg 19219  LSubSpclss 19625   freeLMod cfrlm 20808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-subg 18208  df-ghm 18288  df-mgp 19162  df-ur 19174  df-ring 19221  df-subrg 19455  df-lmod 19558  df-lss 19626  df-lmhm 19716  df-sra 19866  df-rgmod 19867  df-dsmm 20794  df-frlm 20809
This theorem is referenced by:  frlmssuvc1  20856  frlmsslsp  20858
  Copyright terms: Public domain W3C validator