MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusum2 Structured version   Visualization version   GIF version

Theorem dchrmusum2 27405
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded, provided that 𝑇 ≠ 0. Lemma 9.4.2 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisumn0.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrisumn0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisumn0.t (𝜑 → seq1( + , 𝐹) ⇝ 𝑇)
dchrisumn0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
Assertion
Ref Expression
dchrmusum2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑦, 1   𝑥,𝑑,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑥,𝑦   𝑥,𝑁,𝑦   𝜑,𝑑,𝑥   𝑇,𝑑,𝑥,𝑦   𝑥,𝑍,𝑦   𝑥,𝐷,𝑦   𝐿,𝑎,𝑑,𝑥,𝑦   𝑋,𝑎,𝑑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑇(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrmusum2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 12959 . . . 4 + ⊆ ℝ
2 ax-1cn 11126 . . . 4 1 ∈ ℂ
3 o1const 15586 . . . 4 ((ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
41, 2, 3mp2an 692 . . 3 (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1)
54a1i 11 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
62a1i 11 . . 3 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 fzfid 13938 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
8 rpvmasum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
9 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
10 rpvmasum.d . . . . . . 7 𝐷 = (Base‘𝐺)
11 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
12 dchrisum.b . . . . . . . 8 (𝜑𝑋𝐷)
1312ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
14 elfzelz 13485 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℤ)
1514adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℤ)
168, 9, 10, 11, 13, 15dchrzrhcl 27156 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
17 elfznn 13514 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
1817adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
19 mucl 27051 . . . . . . . . . 10 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
2019zred 12638 . . . . . . . . 9 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℝ)
21 nndivre 12227 . . . . . . . . 9 (((μ‘𝑑) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
2220, 21mpancom 688 . . . . . . . 8 (𝑑 ∈ ℕ → ((μ‘𝑑) / 𝑑) ∈ ℝ)
2318, 22syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
2423recnd 11202 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
2516, 24mulcld 11194 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
267, 25fsumcl 15699 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
27 dchrisumn0.t . . . . . 6 (𝜑 → seq1( + , 𝐹) ⇝ 𝑇)
28 climcl 15465 . . . . . 6 (seq1( + , 𝐹) ⇝ 𝑇𝑇 ∈ ℂ)
2927, 28syl 17 . . . . 5 (𝜑𝑇 ∈ ℂ)
3029adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝑇 ∈ ℂ)
3126, 30mulcld 11194 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) ∈ ℂ)
321a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
33 subcl 11420 . . . . 5 ((1 ∈ ℂ ∧ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) ∈ ℂ) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ ℂ)
342, 31, 33sylancr 587 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ ℂ)
35 1red 11175 . . . 4 (𝜑 → 1 ∈ ℝ)
36 dchrisumn0.c . . . . . 6 (𝜑𝐶 ∈ (0[,)+∞))
37 elrege0 13415 . . . . . 6 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
3836, 37sylib 218 . . . . 5 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
3938simpld 494 . . . 4 (𝜑𝐶 ∈ ℝ)
40 fzfid 13938 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
4125adantlrr 721 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
42 nnuz 12836 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
43 1zzd 12564 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
4412adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
45 nnz 12550 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4645adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
478, 9, 10, 11, 44, 46dchrzrhcl 27156 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
48 nncn 12194 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4948adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
50 nnne0 12220 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
5150adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
5247, 49, 51divcld 11958 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
53 dchrisumn0.f . . . . . . . . . . . . . . 15 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
54 2fveq3 6863 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
55 id 22 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑚𝑎 = 𝑚)
5654, 55oveq12d 7405 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
5756cbvmptv 5211 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / 𝑚))
5853, 57eqtri 2752 . . . . . . . . . . . . . 14 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / 𝑚))
5952, 58fmptd 7086 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶ℂ)
6059ffvelcdmda 7056 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
6142, 43, 60serf 13995 . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
6261ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → seq1( + , 𝐹):ℕ⟶ℂ)
63 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
6463rpred 12995 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
65 nndivre 12227 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ)
6664, 17, 65syl2an 596 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
6717adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
6867nncnd 12202 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℂ)
6968mullidd 11192 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) = 𝑑)
70 fznnfl 13824 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7164, 70syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7271simplbda 499 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
7369, 72eqbrtrd 5129 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) ≤ 𝑥)
74 1red 11175 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
7564adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
7667nnrpd 12993 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
7774, 75, 76lemuldivd 13044 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑑) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑑)))
7873, 77mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑑))
79 flge1nn 13783 . . . . . . . . . . 11 (((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑)) → (⌊‘(𝑥 / 𝑑)) ∈ ℕ)
8066, 78, 79syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑑)) ∈ ℕ)
8162, 80ffvelcdmd 7057 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) ∈ ℂ)
8241, 81mulcld 11194 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) ∈ ℂ)
8329ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
8441, 83mulcld 11194 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) ∈ ℂ)
8540, 82, 84fsumsub 15754 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
8641, 81, 83subdid 11634 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
8786sumeq2dv 15668 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) = Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
8812ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑋𝐷)
8914ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℤ)
90 elfzelz 13485 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℤ)
9190adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℤ)
928, 9, 10, 11, 88, 89, 91dchrzrhmul 27157 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿‘(𝑑 · 𝑚))) = ((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))))
9392oveq1d 7402 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
9416adantlrr 721 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
9594adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
9668adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℂ)
978, 9, 10, 11, 88, 91dchrzrhcl 27156 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
98 elfznn 13514 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℕ)
9998adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℕ)
10099nncnd 12202 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℂ)
10167nnne0d 12236 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ≠ 0)
102101adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ≠ 0)
10399nnne0d 12236 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ≠ 0)
10495, 96, 97, 100, 102, 103divmuldivd 11999 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
10593, 104eqtr4d 2767 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
106105oveq2d 7403 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))) = ((μ‘𝑑) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
10767, 19syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℤ)
108107zcnd 12639 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℂ)
109108adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (μ‘𝑑) ∈ ℂ)
11095, 96, 102divcld 11958 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑑)) / 𝑑) ∈ ℂ)
11197, 100, 103divcld 11958 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
112109, 110, 111mulassd 11197 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = ((μ‘𝑑) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
113109, 95, 96, 102div12d 11994 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) = ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)))
114113oveq1d 7402 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
115106, 112, 1143eqtr2d 2770 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
116115sumeq2dv 15668 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
117 fzfid 13938 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑑))) ∈ Fin)
118 simpll 766 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝜑)
119118, 98, 52syl2an 596 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
120117, 41, 119fsummulc2 15750 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
121 ovex 7420 . . . . . . . . . . . . . . . 16 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
12256, 53, 121fvmpt 6968 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
12399, 122syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
12480, 42eleqtrdi 2838 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑑)) ∈ (ℤ‘1))
125123, 124, 119fsumser 15696 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))))
126125oveq2d 7403 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))))
127116, 120, 1263eqtr2rd 2771 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
128127sumeq2dv 15668 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
129 2fveq3 6863 . . . . . . . . . . . . 13 (𝑛 = (𝑑 · 𝑚) → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘(𝑑 · 𝑚))))
130 id 22 . . . . . . . . . . . . 13 (𝑛 = (𝑑 · 𝑚) → 𝑛 = (𝑑 · 𝑚))
131129, 130oveq12d 7405 . . . . . . . . . . . 12 (𝑛 = (𝑑 · 𝑚) → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)))
132131oveq2d 7403 . . . . . . . . . . 11 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) = ((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
133 elrabi 3654 . . . . . . . . . . . . . . 15 (𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} → 𝑑 ∈ ℕ)
134133ad2antll 729 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℕ)
135134, 19syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℤ)
136135zcnd 12639 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℂ)
13712ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
138 elfzelz 13485 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
139138adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ)
1408, 9, 10, 11, 137, 139dchrzrhcl 27156 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
141 fz1ssnn 13516 . . . . . . . . . . . . . . . . 17 (1...(⌊‘𝑥)) ⊆ ℕ
142141a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ⊆ ℕ)
143142sselda 3946 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
144143nncnd 12202 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
145143nnne0d 12236 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
146140, 144, 145divcld 11958 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑛)) / 𝑛) ∈ ℂ)
147146adantrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((𝑋‘(𝐿𝑛)) / 𝑛) ∈ ℂ)
148136, 147mulcld 11194 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) ∈ ℂ)
149132, 64, 148dvdsflsumcom 27098 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
150 2fveq3 6863 . . . . . . . . . . . 12 (𝑛 = 1 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘1)))
151 id 22 . . . . . . . . . . . 12 (𝑛 = 1 → 𝑛 = 1)
152150, 151oveq12d 7405 . . . . . . . . . . 11 (𝑛 = 1 → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘1)) / 1))
153 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
154 flge1nn 13783 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
15564, 153, 154syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ)
156155, 42eleqtrdi 2838 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘1))
157 eluzfz1 13492 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝑥)))
158156, 157syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ (1...(⌊‘𝑥)))
159152, 40, 142, 158, 146musumsum 27102 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) = ((𝑋‘(𝐿‘1)) / 1))
160128, 149, 1593eqtr2d 2770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) = ((𝑋‘(𝐿‘1)) / 1))
1618, 9, 10, 11, 12dchrzrh1 27155 . . . . . . . . . . . 12 (𝜑 → (𝑋‘(𝐿‘1)) = 1)
162161adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑋‘(𝐿‘1)) = 1)
163162oveq1d 7402 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑋‘(𝐿‘1)) / 1) = (1 / 1))
164 1div1e1 11873 . . . . . . . . . 10 (1 / 1) = 1
165163, 164eqtrdi 2780 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑋‘(𝐿‘1)) / 1) = 1)
166160, 165eqtr2d 2765 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))))
16729adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑇 ∈ ℂ)
16840, 167, 41fsummulc1 15751 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))
169166, 168oveq12d 7405 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
17085, 87, 1693eqtr4rd 2775 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)))
171170fveq2d 6862 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))) = (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))))
17281, 83subcld 11533 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇) ∈ ℂ)
17341, 172mulcld 11194 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ∈ ℂ)
17440, 173fsumcl 15699 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ∈ ℂ)
175174abscld 15405 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ∈ ℝ)
176173abscld 15405 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ∈ ℝ)
17740, 176fsumrecl 15700 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ∈ ℝ)
17839adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐶 ∈ ℝ)
17940, 173fsumabs 15767 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))))
180 reflcl 13758 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
18164, 180syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℝ)
182181, 178remulcld 11204 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((⌊‘𝑥) · 𝐶) ∈ ℝ)
183182, 63rerpdivcld 13026 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((⌊‘𝑥) · 𝐶) / 𝑥) ∈ ℝ)
184178, 63rerpdivcld 13026 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝐶 / 𝑥) ∈ ℝ)
185184adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / 𝑥) ∈ ℝ)
18641abscld 15405 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) ∈ ℝ)
18767nnrecred 12237 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) ∈ ℝ)
188172abscld 15405 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ∈ ℝ)
18976rpred 12995 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ)
190185, 189remulcld 11204 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 / 𝑥) · 𝑑) ∈ ℝ)
19141absge0d 15413 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))))
192172absge0d 15413 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)))
19394abscld 15405 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑑))) ∈ ℝ)
19424adantlrr 721 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
195194abscld 15405 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) ∈ ℝ)
19694absge0d 15413 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑋‘(𝐿𝑑))))
197194absge0d 15413 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((μ‘𝑑) / 𝑑)))
198 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝑍) = (Base‘𝑍)
19912ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
200 rpvmasum.a . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ)
201200nnnn0d 12503 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
2029, 198, 11znzrhfo 21457 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
203 fof 6772 . . . . . . . . . . . . . . . . 17 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
204201, 202, 2033syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝐿:ℤ⟶(Base‘𝑍))
205204adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐿:ℤ⟶(Base‘𝑍))
206 ffvelcdm 7053 . . . . . . . . . . . . . . 15 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑑 ∈ ℤ) → (𝐿𝑑) ∈ (Base‘𝑍))
207205, 14, 206syl2an 596 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐿𝑑) ∈ (Base‘𝑍))
2088, 10, 9, 198, 199, 207dchrabs2 27173 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑑))) ≤ 1)
209108, 68, 101absdivd 15424 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) = ((abs‘(μ‘𝑑)) / (abs‘𝑑)))
21076rprege0d 13002 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑑 ∈ ℝ ∧ 0 ≤ 𝑑))
211 absid 15262 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ ℝ ∧ 0 ≤ 𝑑) → (abs‘𝑑) = 𝑑)
212210, 211syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘𝑑) = 𝑑)
213212oveq2d 7403 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑑)) / (abs‘𝑑)) = ((abs‘(μ‘𝑑)) / 𝑑))
214209, 213eqtrd 2764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) = ((abs‘(μ‘𝑑)) / 𝑑))
215108abscld 15405 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑑)) ∈ ℝ)
216 mule1 27058 . . . . . . . . . . . . . . . 16 (𝑑 ∈ ℕ → (abs‘(μ‘𝑑)) ≤ 1)
21767, 216syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑑)) ≤ 1)
218215, 74, 76, 217lediv1dd 13053 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑑)) / 𝑑) ≤ (1 / 𝑑))
219214, 218eqbrtrd 5129 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) ≤ (1 / 𝑑))
220193, 74, 195, 187, 196, 197, 208, 219lemul12ad 12125 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑑))) · (abs‘((μ‘𝑑) / 𝑑))) ≤ (1 · (1 / 𝑑)))
22194, 194absmuld 15423 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) = ((abs‘(𝑋‘(𝐿𝑑))) · (abs‘((μ‘𝑑) / 𝑑))))
222187recnd 11202 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) ∈ ℂ)
223222mullidd 11192 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · (1 / 𝑑)) = (1 / 𝑑))
224223eqcomd 2735 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) = (1 · (1 / 𝑑)))
225220, 221, 2243brtr4d 5139 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) ≤ (1 / 𝑑))
226 2fveq3 6863 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 / 𝑑) → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))))
227226fvoveq1d 7409 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 / 𝑑) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) = (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)))
228 oveq2 7395 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 / 𝑑) → (𝐶 / 𝑦) = (𝐶 / (𝑥 / 𝑑)))
229227, 228breq12d 5120 . . . . . . . . . . . . 13 (𝑦 = (𝑥 / 𝑑) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ (𝐶 / (𝑥 / 𝑑))))
230 dchrisumn0.1 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
231230ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
232 1re 11174 . . . . . . . . . . . . . . 15 1 ∈ ℝ
233 elicopnf 13406 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → ((𝑥 / 𝑑) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑))))
234232, 233ax-mp 5 . . . . . . . . . . . . . 14 ((𝑥 / 𝑑) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑)))
23566, 78, 234sylanbrc 583 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ (1[,)+∞))
236229, 231, 235rspcdva 3589 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ (𝐶 / (𝑥 / 𝑑)))
237178recnd 11202 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐶 ∈ ℂ)
238237adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
239 rpcnne0 12970 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
240239ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
241240adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
242 divdiv2 11894 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → (𝐶 / (𝑥 / 𝑑)) = ((𝐶 · 𝑑) / 𝑥))
243238, 241, 68, 101, 242syl112anc 1376 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (𝑥 / 𝑑)) = ((𝐶 · 𝑑) / 𝑥))
244 div23 11856 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝑑 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((𝐶 · 𝑑) / 𝑥) = ((𝐶 / 𝑥) · 𝑑))
245238, 68, 241, 244syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 · 𝑑) / 𝑥) = ((𝐶 / 𝑥) · 𝑑))
246243, 245eqtrd 2764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (𝑥 / 𝑑)) = ((𝐶 / 𝑥) · 𝑑))
247236, 246breqtrd 5133 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ ((𝐶 / 𝑥) · 𝑑))
248186, 187, 188, 190, 191, 192, 225, 247lemul12ad 12125 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) · (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ ((1 / 𝑑) · ((𝐶 / 𝑥) · 𝑑)))
24941, 172absmuld 15423 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) = ((abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) · (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))))
250184recnd 11202 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝐶 / 𝑥) ∈ ℂ)
251250adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / 𝑥) ∈ ℂ)
252251, 68, 101divcan4d 11964 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝐶 / 𝑥) · 𝑑) / 𝑑) = (𝐶 / 𝑥))
253251, 68mulcld 11194 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 / 𝑥) · 𝑑) ∈ ℂ)
254253, 68, 101divrec2d 11962 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝐶 / 𝑥) · 𝑑) / 𝑑) = ((1 / 𝑑) · ((𝐶 / 𝑥) · 𝑑)))
255252, 254eqtr3d 2766 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / 𝑥) = ((1 / 𝑑) · ((𝐶 / 𝑥) · 𝑑)))
256248, 249, 2553brtr4d 5139 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ (𝐶 / 𝑥))
25740, 176, 185, 256fsumle 15765 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥))
258155nnnn0d 12503 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ0)
259 hashfz1 14311 . . . . . . . . . . 11 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
260258, 259syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
261260oveq1d 7402 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((♯‘(1...(⌊‘𝑥))) · (𝐶 / 𝑥)) = ((⌊‘𝑥) · (𝐶 / 𝑥)))
262 fsumconst 15756 . . . . . . . . . 10 (((1...(⌊‘𝑥)) ∈ Fin ∧ (𝐶 / 𝑥) ∈ ℂ) → Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (𝐶 / 𝑥)))
26340, 250, 262syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (𝐶 / 𝑥)))
264155nncnd 12202 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℂ)
265 divass 11855 . . . . . . . . . 10 (((⌊‘𝑥) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((⌊‘𝑥) · 𝐶) / 𝑥) = ((⌊‘𝑥) · (𝐶 / 𝑥)))
266264, 237, 240, 265syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((⌊‘𝑥) · 𝐶) / 𝑥) = ((⌊‘𝑥) · (𝐶 / 𝑥)))
267261, 263, 2663eqtr4d 2774 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥) = (((⌊‘𝑥) · 𝐶) / 𝑥))
268257, 267breqtrd 5133 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ (((⌊‘𝑥) · 𝐶) / 𝑥))
26938adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
270 flle 13761 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
27164, 270syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ≤ 𝑥)
272 lemul1a 12036 . . . . . . . . 9 ((((⌊‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ (⌊‘𝑥) ≤ 𝑥) → ((⌊‘𝑥) · 𝐶) ≤ (𝑥 · 𝐶))
273181, 64, 269, 271, 272syl31anc 1375 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((⌊‘𝑥) · 𝐶) ≤ (𝑥 · 𝐶))
274182, 178, 63ledivmuld 13048 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((⌊‘𝑥) · 𝐶) / 𝑥) ≤ 𝐶 ↔ ((⌊‘𝑥) · 𝐶) ≤ (𝑥 · 𝐶)))
275273, 274mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((⌊‘𝑥) · 𝐶) / 𝑥) ≤ 𝐶)
276177, 183, 178, 268, 275letrd 11331 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ 𝐶)
277175, 177, 178, 179, 276letrd 11331 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ 𝐶)
278171, 277eqbrtrd 5129 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))) ≤ 𝐶)
27932, 34, 35, 39, 278elo1d 15502 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))) ∈ 𝑂(1))
2806, 31, 279o1dif 15596 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1)))
2815, 280mpbid 232 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  wss 3914   class class class wbr 5107  cmpt 5188  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  cle 11209  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  cuz 12793  +crp 12951  [,)cico 13308  ...cfz 13468  cfl 13752  seqcseq 13966  chash 14295  abscabs 15200  cli 15450  𝑂(1)co1 15452  Σcsu 15652  cdvds 16222  Basecbs 17179  0gc0g 17402  ℤRHomczrh 21409  ℤ/nczn 21412  μcmu 27005  DChrcdchr 27143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-o1 15456  df-lo1 15457  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-qus 17472  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-cntz 19249  df-od 19458  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-zn 21416  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-mu 27011  df-dchr 27144
This theorem is referenced by:  dchrvmasumiflem2  27413  dchrmusumlem  27433
  Copyright terms: Public domain W3C validator