MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusum2 Structured version   Visualization version   GIF version

Theorem dchrmusum2 27457
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded, provided that 𝑇 ≠ 0. Lemma 9.4.2 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisumn0.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrisumn0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisumn0.t (𝜑 → seq1( + , 𝐹) ⇝ 𝑇)
dchrisumn0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
Assertion
Ref Expression
dchrmusum2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑦, 1   𝑥,𝑑,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑥,𝑦   𝑥,𝑁,𝑦   𝜑,𝑑,𝑥   𝑇,𝑑,𝑥,𝑦   𝑥,𝑍,𝑦   𝑥,𝐷,𝑦   𝐿,𝑎,𝑑,𝑥,𝑦   𝑋,𝑎,𝑑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑇(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrmusum2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 13016 . . . 4 + ⊆ ℝ
2 ax-1cn 11187 . . . 4 1 ∈ ℂ
3 o1const 15636 . . . 4 ((ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
41, 2, 3mp2an 692 . . 3 (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1)
54a1i 11 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
62a1i 11 . . 3 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 fzfid 13991 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
8 rpvmasum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
9 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
10 rpvmasum.d . . . . . . 7 𝐷 = (Base‘𝐺)
11 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
12 dchrisum.b . . . . . . . 8 (𝜑𝑋𝐷)
1312ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
14 elfzelz 13541 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℤ)
1514adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℤ)
168, 9, 10, 11, 13, 15dchrzrhcl 27208 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
17 elfznn 13570 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
1817adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
19 mucl 27103 . . . . . . . . . 10 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
2019zred 12697 . . . . . . . . 9 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℝ)
21 nndivre 12281 . . . . . . . . 9 (((μ‘𝑑) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
2220, 21mpancom 688 . . . . . . . 8 (𝑑 ∈ ℕ → ((μ‘𝑑) / 𝑑) ∈ ℝ)
2318, 22syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
2423recnd 11263 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
2516, 24mulcld 11255 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
267, 25fsumcl 15749 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
27 dchrisumn0.t . . . . . 6 (𝜑 → seq1( + , 𝐹) ⇝ 𝑇)
28 climcl 15515 . . . . . 6 (seq1( + , 𝐹) ⇝ 𝑇𝑇 ∈ ℂ)
2927, 28syl 17 . . . . 5 (𝜑𝑇 ∈ ℂ)
3029adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝑇 ∈ ℂ)
3126, 30mulcld 11255 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) ∈ ℂ)
321a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
33 subcl 11481 . . . . 5 ((1 ∈ ℂ ∧ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) ∈ ℂ) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ ℂ)
342, 31, 33sylancr 587 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ ℂ)
35 1red 11236 . . . 4 (𝜑 → 1 ∈ ℝ)
36 dchrisumn0.c . . . . . 6 (𝜑𝐶 ∈ (0[,)+∞))
37 elrege0 13471 . . . . . 6 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
3836, 37sylib 218 . . . . 5 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
3938simpld 494 . . . 4 (𝜑𝐶 ∈ ℝ)
40 fzfid 13991 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
4125adantlrr 721 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
42 nnuz 12895 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
43 1zzd 12623 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
4412adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
45 nnz 12609 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4645adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
478, 9, 10, 11, 44, 46dchrzrhcl 27208 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
48 nncn 12248 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4948adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
50 nnne0 12274 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
5150adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
5247, 49, 51divcld 12017 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
53 dchrisumn0.f . . . . . . . . . . . . . . 15 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
54 2fveq3 6881 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
55 id 22 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑚𝑎 = 𝑚)
5654, 55oveq12d 7423 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
5756cbvmptv 5225 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / 𝑚))
5853, 57eqtri 2758 . . . . . . . . . . . . . 14 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / 𝑚))
5952, 58fmptd 7104 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶ℂ)
6059ffvelcdmda 7074 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
6142, 43, 60serf 14048 . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
6261ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → seq1( + , 𝐹):ℕ⟶ℂ)
63 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
6463rpred 13051 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
65 nndivre 12281 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ)
6664, 17, 65syl2an 596 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
6717adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
6867nncnd 12256 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℂ)
6968mullidd 11253 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) = 𝑑)
70 fznnfl 13879 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7164, 70syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7271simplbda 499 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
7369, 72eqbrtrd 5141 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) ≤ 𝑥)
74 1red 11236 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
7564adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
7667nnrpd 13049 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
7774, 75, 76lemuldivd 13100 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑑) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑑)))
7873, 77mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑑))
79 flge1nn 13838 . . . . . . . . . . 11 (((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑)) → (⌊‘(𝑥 / 𝑑)) ∈ ℕ)
8066, 78, 79syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑑)) ∈ ℕ)
8162, 80ffvelcdmd 7075 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) ∈ ℂ)
8241, 81mulcld 11255 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) ∈ ℂ)
8329ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
8441, 83mulcld 11255 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) ∈ ℂ)
8540, 82, 84fsumsub 15804 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
8641, 81, 83subdid 11693 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
8786sumeq2dv 15718 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) = Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
8812ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑋𝐷)
8914ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℤ)
90 elfzelz 13541 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℤ)
9190adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℤ)
928, 9, 10, 11, 88, 89, 91dchrzrhmul 27209 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿‘(𝑑 · 𝑚))) = ((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))))
9392oveq1d 7420 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
9416adantlrr 721 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
9594adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
9668adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℂ)
978, 9, 10, 11, 88, 91dchrzrhcl 27208 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
98 elfznn 13570 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℕ)
9998adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℕ)
10099nncnd 12256 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℂ)
10167nnne0d 12290 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ≠ 0)
102101adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ≠ 0)
10399nnne0d 12290 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ≠ 0)
10495, 96, 97, 100, 102, 103divmuldivd 12058 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
10593, 104eqtr4d 2773 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
106105oveq2d 7421 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))) = ((μ‘𝑑) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
10767, 19syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℤ)
108107zcnd 12698 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℂ)
109108adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (μ‘𝑑) ∈ ℂ)
11095, 96, 102divcld 12017 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑑)) / 𝑑) ∈ ℂ)
11197, 100, 103divcld 12017 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
112109, 110, 111mulassd 11258 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = ((μ‘𝑑) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
113109, 95, 96, 102div12d 12053 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) = ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)))
114113oveq1d 7420 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
115106, 112, 1143eqtr2d 2776 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
116115sumeq2dv 15718 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
117 fzfid 13991 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑑))) ∈ Fin)
118 simpll 766 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝜑)
119118, 98, 52syl2an 596 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
120117, 41, 119fsummulc2 15800 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
121 ovex 7438 . . . . . . . . . . . . . . . 16 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
12256, 53, 121fvmpt 6986 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
12399, 122syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
12480, 42eleqtrdi 2844 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑑)) ∈ (ℤ‘1))
125123, 124, 119fsumser 15746 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))))
126125oveq2d 7421 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))))
127116, 120, 1263eqtr2rd 2777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
128127sumeq2dv 15718 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
129 2fveq3 6881 . . . . . . . . . . . . 13 (𝑛 = (𝑑 · 𝑚) → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘(𝑑 · 𝑚))))
130 id 22 . . . . . . . . . . . . 13 (𝑛 = (𝑑 · 𝑚) → 𝑛 = (𝑑 · 𝑚))
131129, 130oveq12d 7423 . . . . . . . . . . . 12 (𝑛 = (𝑑 · 𝑚) → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)))
132131oveq2d 7421 . . . . . . . . . . 11 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) = ((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
133 elrabi 3666 . . . . . . . . . . . . . . 15 (𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} → 𝑑 ∈ ℕ)
134133ad2antll 729 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℕ)
135134, 19syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℤ)
136135zcnd 12698 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℂ)
13712ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
138 elfzelz 13541 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
139138adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ)
1408, 9, 10, 11, 137, 139dchrzrhcl 27208 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
141 fz1ssnn 13572 . . . . . . . . . . . . . . . . 17 (1...(⌊‘𝑥)) ⊆ ℕ
142141a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ⊆ ℕ)
143142sselda 3958 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
144143nncnd 12256 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
145143nnne0d 12290 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
146140, 144, 145divcld 12017 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑛)) / 𝑛) ∈ ℂ)
147146adantrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((𝑋‘(𝐿𝑛)) / 𝑛) ∈ ℂ)
148136, 147mulcld 11255 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) ∈ ℂ)
149132, 64, 148dvdsflsumcom 27150 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
150 2fveq3 6881 . . . . . . . . . . . 12 (𝑛 = 1 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘1)))
151 id 22 . . . . . . . . . . . 12 (𝑛 = 1 → 𝑛 = 1)
152150, 151oveq12d 7423 . . . . . . . . . . 11 (𝑛 = 1 → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘1)) / 1))
153 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
154 flge1nn 13838 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
15564, 153, 154syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ)
156155, 42eleqtrdi 2844 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘1))
157 eluzfz1 13548 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝑥)))
158156, 157syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ (1...(⌊‘𝑥)))
159152, 40, 142, 158, 146musumsum 27154 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) = ((𝑋‘(𝐿‘1)) / 1))
160128, 149, 1593eqtr2d 2776 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) = ((𝑋‘(𝐿‘1)) / 1))
1618, 9, 10, 11, 12dchrzrh1 27207 . . . . . . . . . . . 12 (𝜑 → (𝑋‘(𝐿‘1)) = 1)
162161adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑋‘(𝐿‘1)) = 1)
163162oveq1d 7420 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑋‘(𝐿‘1)) / 1) = (1 / 1))
164 1div1e1 11932 . . . . . . . . . 10 (1 / 1) = 1
165163, 164eqtrdi 2786 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑋‘(𝐿‘1)) / 1) = 1)
166160, 165eqtr2d 2771 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))))
16729adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑇 ∈ ℂ)
16840, 167, 41fsummulc1 15801 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))
169166, 168oveq12d 7423 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
17085, 87, 1693eqtr4rd 2781 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)))
171170fveq2d 6880 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))) = (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))))
17281, 83subcld 11594 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇) ∈ ℂ)
17341, 172mulcld 11255 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ∈ ℂ)
17440, 173fsumcl 15749 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ∈ ℂ)
175174abscld 15455 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ∈ ℝ)
176173abscld 15455 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ∈ ℝ)
17740, 176fsumrecl 15750 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ∈ ℝ)
17839adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐶 ∈ ℝ)
17940, 173fsumabs 15817 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))))
180 reflcl 13813 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
18164, 180syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℝ)
182181, 178remulcld 11265 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((⌊‘𝑥) · 𝐶) ∈ ℝ)
183182, 63rerpdivcld 13082 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((⌊‘𝑥) · 𝐶) / 𝑥) ∈ ℝ)
184178, 63rerpdivcld 13082 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝐶 / 𝑥) ∈ ℝ)
185184adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / 𝑥) ∈ ℝ)
18641abscld 15455 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) ∈ ℝ)
18767nnrecred 12291 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) ∈ ℝ)
188172abscld 15455 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ∈ ℝ)
18976rpred 13051 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ)
190185, 189remulcld 11265 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 / 𝑥) · 𝑑) ∈ ℝ)
19141absge0d 15463 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))))
192172absge0d 15463 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)))
19394abscld 15455 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑑))) ∈ ℝ)
19424adantlrr 721 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
195194abscld 15455 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) ∈ ℝ)
19694absge0d 15463 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑋‘(𝐿𝑑))))
197194absge0d 15463 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((μ‘𝑑) / 𝑑)))
198 eqid 2735 . . . . . . . . . . . . . 14 (Base‘𝑍) = (Base‘𝑍)
19912ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
200 rpvmasum.a . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ)
201200nnnn0d 12562 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
2029, 198, 11znzrhfo 21508 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
203 fof 6790 . . . . . . . . . . . . . . . . 17 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
204201, 202, 2033syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝐿:ℤ⟶(Base‘𝑍))
205204adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐿:ℤ⟶(Base‘𝑍))
206 ffvelcdm 7071 . . . . . . . . . . . . . . 15 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑑 ∈ ℤ) → (𝐿𝑑) ∈ (Base‘𝑍))
207205, 14, 206syl2an 596 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐿𝑑) ∈ (Base‘𝑍))
2088, 10, 9, 198, 199, 207dchrabs2 27225 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑑))) ≤ 1)
209108, 68, 101absdivd 15474 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) = ((abs‘(μ‘𝑑)) / (abs‘𝑑)))
21076rprege0d 13058 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑑 ∈ ℝ ∧ 0 ≤ 𝑑))
211 absid 15315 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ ℝ ∧ 0 ≤ 𝑑) → (abs‘𝑑) = 𝑑)
212210, 211syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘𝑑) = 𝑑)
213212oveq2d 7421 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑑)) / (abs‘𝑑)) = ((abs‘(μ‘𝑑)) / 𝑑))
214209, 213eqtrd 2770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) = ((abs‘(μ‘𝑑)) / 𝑑))
215108abscld 15455 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑑)) ∈ ℝ)
216 mule1 27110 . . . . . . . . . . . . . . . 16 (𝑑 ∈ ℕ → (abs‘(μ‘𝑑)) ≤ 1)
21767, 216syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑑)) ≤ 1)
218215, 74, 76, 217lediv1dd 13109 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑑)) / 𝑑) ≤ (1 / 𝑑))
219214, 218eqbrtrd 5141 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) ≤ (1 / 𝑑))
220193, 74, 195, 187, 196, 197, 208, 219lemul12ad 12184 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑑))) · (abs‘((μ‘𝑑) / 𝑑))) ≤ (1 · (1 / 𝑑)))
22194, 194absmuld 15473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) = ((abs‘(𝑋‘(𝐿𝑑))) · (abs‘((μ‘𝑑) / 𝑑))))
222187recnd 11263 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) ∈ ℂ)
223222mullidd 11253 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · (1 / 𝑑)) = (1 / 𝑑))
224223eqcomd 2741 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) = (1 · (1 / 𝑑)))
225220, 221, 2243brtr4d 5151 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) ≤ (1 / 𝑑))
226 2fveq3 6881 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 / 𝑑) → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))))
227226fvoveq1d 7427 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 / 𝑑) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) = (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)))
228 oveq2 7413 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 / 𝑑) → (𝐶 / 𝑦) = (𝐶 / (𝑥 / 𝑑)))
229227, 228breq12d 5132 . . . . . . . . . . . . 13 (𝑦 = (𝑥 / 𝑑) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ (𝐶 / (𝑥 / 𝑑))))
230 dchrisumn0.1 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
231230ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
232 1re 11235 . . . . . . . . . . . . . . 15 1 ∈ ℝ
233 elicopnf 13462 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → ((𝑥 / 𝑑) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑))))
234232, 233ax-mp 5 . . . . . . . . . . . . . 14 ((𝑥 / 𝑑) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑)))
23566, 78, 234sylanbrc 583 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ (1[,)+∞))
236229, 231, 235rspcdva 3602 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ (𝐶 / (𝑥 / 𝑑)))
237178recnd 11263 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐶 ∈ ℂ)
238237adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
239 rpcnne0 13027 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
240239ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
241240adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
242 divdiv2 11953 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → (𝐶 / (𝑥 / 𝑑)) = ((𝐶 · 𝑑) / 𝑥))
243238, 241, 68, 101, 242syl112anc 1376 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (𝑥 / 𝑑)) = ((𝐶 · 𝑑) / 𝑥))
244 div23 11915 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝑑 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((𝐶 · 𝑑) / 𝑥) = ((𝐶 / 𝑥) · 𝑑))
245238, 68, 241, 244syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 · 𝑑) / 𝑥) = ((𝐶 / 𝑥) · 𝑑))
246243, 245eqtrd 2770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (𝑥 / 𝑑)) = ((𝐶 / 𝑥) · 𝑑))
247236, 246breqtrd 5145 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ ((𝐶 / 𝑥) · 𝑑))
248186, 187, 188, 190, 191, 192, 225, 247lemul12ad 12184 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) · (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ ((1 / 𝑑) · ((𝐶 / 𝑥) · 𝑑)))
24941, 172absmuld 15473 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) = ((abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) · (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))))
250184recnd 11263 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝐶 / 𝑥) ∈ ℂ)
251250adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / 𝑥) ∈ ℂ)
252251, 68, 101divcan4d 12023 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝐶 / 𝑥) · 𝑑) / 𝑑) = (𝐶 / 𝑥))
253251, 68mulcld 11255 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 / 𝑥) · 𝑑) ∈ ℂ)
254253, 68, 101divrec2d 12021 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝐶 / 𝑥) · 𝑑) / 𝑑) = ((1 / 𝑑) · ((𝐶 / 𝑥) · 𝑑)))
255252, 254eqtr3d 2772 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / 𝑥) = ((1 / 𝑑) · ((𝐶 / 𝑥) · 𝑑)))
256248, 249, 2553brtr4d 5151 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ (𝐶 / 𝑥))
25740, 176, 185, 256fsumle 15815 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥))
258155nnnn0d 12562 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ0)
259 hashfz1 14364 . . . . . . . . . . 11 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
260258, 259syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
261260oveq1d 7420 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((♯‘(1...(⌊‘𝑥))) · (𝐶 / 𝑥)) = ((⌊‘𝑥) · (𝐶 / 𝑥)))
262 fsumconst 15806 . . . . . . . . . 10 (((1...(⌊‘𝑥)) ∈ Fin ∧ (𝐶 / 𝑥) ∈ ℂ) → Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (𝐶 / 𝑥)))
26340, 250, 262syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (𝐶 / 𝑥)))
264155nncnd 12256 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℂ)
265 divass 11914 . . . . . . . . . 10 (((⌊‘𝑥) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((⌊‘𝑥) · 𝐶) / 𝑥) = ((⌊‘𝑥) · (𝐶 / 𝑥)))
266264, 237, 240, 265syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((⌊‘𝑥) · 𝐶) / 𝑥) = ((⌊‘𝑥) · (𝐶 / 𝑥)))
267261, 263, 2663eqtr4d 2780 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥) = (((⌊‘𝑥) · 𝐶) / 𝑥))
268257, 267breqtrd 5145 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ (((⌊‘𝑥) · 𝐶) / 𝑥))
26938adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
270 flle 13816 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
27164, 270syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ≤ 𝑥)
272 lemul1a 12095 . . . . . . . . 9 ((((⌊‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ (⌊‘𝑥) ≤ 𝑥) → ((⌊‘𝑥) · 𝐶) ≤ (𝑥 · 𝐶))
273181, 64, 269, 271, 272syl31anc 1375 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((⌊‘𝑥) · 𝐶) ≤ (𝑥 · 𝐶))
274182, 178, 63ledivmuld 13104 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((⌊‘𝑥) · 𝐶) / 𝑥) ≤ 𝐶 ↔ ((⌊‘𝑥) · 𝐶) ≤ (𝑥 · 𝐶)))
275273, 274mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((⌊‘𝑥) · 𝐶) / 𝑥) ≤ 𝐶)
276177, 183, 178, 268, 275letrd 11392 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ 𝐶)
277175, 177, 178, 179, 276letrd 11392 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ 𝐶)
278171, 277eqbrtrd 5141 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))) ≤ 𝐶)
27932, 34, 35, 39, 278elo1d 15552 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))) ∈ 𝑂(1))
2806, 31, 279o1dif 15646 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1)))
2815, 280mpbid 232 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  wss 3926   class class class wbr 5119  cmpt 5201  wf 6527  ontowfo 6529  cfv 6531  (class class class)co 7405  Fincfn 8959  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  +∞cpnf 11266  cle 11270  cmin 11466   / cdiv 11894  cn 12240  0cn0 12501  cz 12588  cuz 12852  +crp 13008  [,)cico 13364  ...cfz 13524  cfl 13807  seqcseq 14019  chash 14348  abscabs 15253  cli 15500  𝑂(1)co1 15502  Σcsu 15702  cdvds 16272  Basecbs 17228  0gc0g 17453  ℤRHomczrh 21460  ℤ/nczn 21463  μcmu 27057  DChrcdchr 27195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-o1 15506  df-lo1 15507  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-qus 17523  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cntz 19300  df-od 19509  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-zn 21467  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-cxp 26518  df-mu 27063  df-dchr 27196
This theorem is referenced by:  dchrvmasumiflem2  27465  dchrmusumlem  27485
  Copyright terms: Public domain W3C validator