Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addgt0ii | Structured version Visualization version GIF version |
Description: Addition of 2 positive numbers is positive. (Contributed by NM, 18-May-1999.) |
Ref | Expression |
---|---|
lt2.1 | ⊢ 𝐴 ∈ ℝ |
lt2.2 | ⊢ 𝐵 ∈ ℝ |
addgt0i.3 | ⊢ 0 < 𝐴 |
addgt0i.4 | ⊢ 0 < 𝐵 |
Ref | Expression |
---|---|
addgt0ii | ⊢ 0 < (𝐴 + 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addgt0i.3 | . 2 ⊢ 0 < 𝐴 | |
2 | addgt0i.4 | . 2 ⊢ 0 < 𝐵 | |
3 | lt2.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
4 | lt2.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
5 | 3, 4 | addgt0i 11512 | . 2 ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 + 𝐵)) |
6 | 1, 2, 5 | mp2an 689 | 1 ⊢ 0 < (𝐴 + 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 class class class wbr 5079 (class class class)co 7269 ℝcr 10869 0cc0 10870 + caddc 10873 < clt 11008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 |
This theorem is referenced by: eqneg 11693 2pos 12074 3pos 12076 4pos 12078 5pos 12080 6pos 12081 7pos 12082 8pos 12083 9pos 12084 |
Copyright terms: Public domain | W3C validator |