Colors of
variables: wff
setvar class |
Syntax hints: class class
class wbr 5148 (class class class)co 7408
0cc0 11109 1c1 11110
+ caddc 11112 <
clt 11247 2c2 12266 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-2 12274 |
This theorem is referenced by: 2ne0
12315 3pos
12316 halfgt0
12427 halflt1
12429 halfpos2
12440 halfnneg2
12442 nominpos
12448 avglt1
12449 avglt2
12450 nn0n0n1ge2b
12539 3halfnz
12640 2rp
12978 hashgt23el
14383 s3fv0
14841 sqreulem
15305 cos2bnd
16130 sin02gt0
16134 sincos2sgn
16136 sin4lt0
16137 epos
16149 sqrt2re
16192 nnoddm1d2
16328 2mulprm
16629 prmgaplem7
16989 slotsdifdsndx
17338 odrngstr
17347 imasvalstr
17396 psgnunilem2
19362 cnfldstr
20945 cnfldfunALTOLD
20957 bl2in
23905 iihalf1
24446 iihalf2
24448 pcoass
24539 tcphcphlem1
24751 trirn
24916 minveclem2
24942 minveclem4
24948 ovolunlem1a
25012 vitalilem4
25127 mbfi1fseqlem5
25236 pilem2
25963 pilem3
25964 pipos
25969 sinhalfpilem
25972 sincosq1lem
26006 tangtx
26014 sinq12gt0
26016 sincos6thpi
26024 cosordlem
26038 tanord1
26045 efif1olem2
26051 efif1olem4
26053 cxpcn3lem
26252 ang180lem1
26311 ang180lem2
26312 atantan
26425 atanbndlem
26427 atans2
26433 leibpi
26444 log2tlbnd
26447 basellem1
26582 basellem2
26583 basellem3
26584 ppiltx
26678 ppiub
26704 chtublem
26711 chtub
26712 chpval2
26718 bcmono
26777 bpos1lem
26782 bposlem1
26784 bposlem2
26785 bposlem3
26786 bposlem4
26787 bposlem5
26788 bposlem6
26789 bposlem7
26790 gausslemma2dlem0c
26858 gausslemma2dlem1a
26865 gausslemma2dlem2
26867 gausslemma2dlem3
26868 lgseisenlem1
26875 lgseisenlem2
26876 lgseisenlem3
26877 lgsquadlem1
26880 lgsquadlem2
26881 2lgslem1a1
26889 2lgslem1a2
26890 2lgslem1c
26893 chebbnd1lem1
26969 chebbnd1lem2
26970 chebbnd1lem3
26971 chebbnd1
26972 chtppilimlem1
26973 chtppilimlem2
26974 chtppilim
26975 chebbnd2
26977 chto1lb
26978 chpchtlim
26979 chpo1ub
26980 dchrisum0fno1
27011 mulog2sumlem2
27035 selberglem2
27046 selberg2lem
27050 chpdifbndlem1
27053 logdivbnd
27056 pntrsumo1
27065 pntpbnd1a
27085 pntlemh
27099 pntlemr
27102 pntlemk
27106 pntlemo
27107 pnt2
27113 umgrislfupgrlem
28379 lfgrnloop
28382 lfuhgr1v0e
28508 wwlksnextwrd
29148 wwlksnextfun
29149 wwlksnextinj
29150 clwlkclwwlklem2a2
29243 konigsberg
29507 ex-fl
29697 minvecolem2
30123 minvecolem4
30128 bcsiALT
30427 opsqrlem6
31393 cdj3lem1
31682 wrdt2ind
32112 cyc2fv2
32276 sqsscirc1
32883 omssubadd
33294 signslema
33568 hgt750lem
33658 subfacval3
34175 nn0prpwlem
35202 knoppndvlem18
35400 knoppndvlem19
35401 knoppndvlem21
35403 cnndvlem1
35408 iccioo01
36203 sin2h
36473 cos2h
36474 tan2h
36475 itg2addnclem
36534 3lexlogpow5ineq2
40915 3lexlogpow5ineq4
40916 3lexlogpow5ineq3
40917 3lexlogpow2ineq1
40918 3lexlogpow2ineq2
40919 3lexlogpow5ineq5
40920 aks4d1lem1
40922 aks4d1p1p3
40929 aks4d1p1p2
40930 aks4d1p1p4
40931 aks4d1p1p6
40933 aks4d1p1p7
40934 aks4d1p1p5
40935 aks4d1p1
40936 aks4d1p2
40937 aks4d1p3
40938 aks4d1p5
40940 aks4d1p6
40941 aks4d1p7d1
40942 aks4d1p7
40943 aks4d1p8
40947 aks4d1p9
40948 2ap1caineq
40956 oexpreposd
41212 pellfundex
41614 jm2.22
41724 jm2.23
41725 imo72b2lem0
42907 sumnnodd
44336 sinaover2ne0
44574 stoweidlem14
44720 stoweidlem49
44755 stoweidlem52
44758 wallispilem4
44774 wallispi2lem2
44778 stirlinglem6
44785 stirlinglem15
44794 stirlingr
44796 dirkerval2
44800 dirkertrigeqlem3
44806 dirkercncflem4
44812 fourierdlem24
44837 fourierdlem79
44891 fourierdlem103
44915 fourierdlem104
44916 fourierdlem112
44924 fourierswlem
44936 fouriersw
44937 lighneallem4a
46266 nnoALTV
46353 nn0oALTV
46354 nn0e
46355 nneven
46356 evengpoap3
46457 nn0eo
47204 flnn0div2ge
47209 fldivexpfllog2
47241 fllog2
47244 blennngt2o2
47268 dignn0flhalf
47294 sepfsepc
47550 |