Colors of
variables: wff
setvar class |
Syntax hints: class class
class wbr 5149 (class class class)co 7409
0cc0 11110 1c1 11111
+ caddc 11113 <
clt 11248 2c2 12267 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-2 12275 |
This theorem is referenced by: 2ne0
12316 3pos
12317 halfgt0
12428 halflt1
12430 halfpos2
12441 halfnneg2
12443 nominpos
12449 avglt1
12450 avglt2
12451 nn0n0n1ge2b
12540 3halfnz
12641 2rp
12979 hashgt23el
14384 s3fv0
14842 sqreulem
15306 cos2bnd
16131 sin02gt0
16135 sincos2sgn
16137 sin4lt0
16138 epos
16150 sqrt2re
16193 nnoddm1d2
16329 2mulprm
16630 prmgaplem7
16990 slotsdifdsndx
17339 odrngstr
17348 imasvalstr
17397 psgnunilem2
19363 cnfldstr
20946 cnfldfunALTOLD
20958 bl2in
23906 iihalf1
24447 iihalf2
24449 pcoass
24540 tcphcphlem1
24752 trirn
24917 minveclem2
24943 minveclem4
24949 ovolunlem1a
25013 vitalilem4
25128 mbfi1fseqlem5
25237 pilem2
25964 pilem3
25965 pipos
25970 sinhalfpilem
25973 sincosq1lem
26007 tangtx
26015 sinq12gt0
26017 sincos6thpi
26025 cosordlem
26039 tanord1
26046 efif1olem2
26052 efif1olem4
26054 cxpcn3lem
26255 ang180lem1
26314 ang180lem2
26315 atantan
26428 atanbndlem
26430 atans2
26436 leibpi
26447 log2tlbnd
26450 basellem1
26585 basellem2
26586 basellem3
26587 ppiltx
26681 ppiub
26707 chtublem
26714 chtub
26715 chpval2
26721 bcmono
26780 bpos1lem
26785 bposlem1
26787 bposlem2
26788 bposlem3
26789 bposlem4
26790 bposlem5
26791 bposlem6
26792 bposlem7
26793 gausslemma2dlem0c
26861 gausslemma2dlem1a
26868 gausslemma2dlem2
26870 gausslemma2dlem3
26871 lgseisenlem1
26878 lgseisenlem2
26879 lgseisenlem3
26880 lgsquadlem1
26883 lgsquadlem2
26884 2lgslem1a1
26892 2lgslem1a2
26893 2lgslem1c
26896 chebbnd1lem1
26972 chebbnd1lem2
26973 chebbnd1lem3
26974 chebbnd1
26975 chtppilimlem1
26976 chtppilimlem2
26977 chtppilim
26978 chebbnd2
26980 chto1lb
26981 chpchtlim
26982 chpo1ub
26983 dchrisum0fno1
27014 mulog2sumlem2
27038 selberglem2
27049 selberg2lem
27053 chpdifbndlem1
27056 logdivbnd
27059 pntrsumo1
27068 pntpbnd1a
27088 pntlemh
27102 pntlemr
27105 pntlemk
27109 pntlemo
27110 pnt2
27116 umgrislfupgrlem
28382 lfgrnloop
28385 lfuhgr1v0e
28511 wwlksnextwrd
29151 wwlksnextfun
29152 wwlksnextinj
29153 clwlkclwwlklem2a2
29246 konigsberg
29510 ex-fl
29700 minvecolem2
30128 minvecolem4
30133 bcsiALT
30432 opsqrlem6
31398 cdj3lem1
31687 wrdt2ind
32117 cyc2fv2
32281 sqsscirc1
32888 omssubadd
33299 signslema
33573 hgt750lem
33663 subfacval3
34180 nn0prpwlem
35207 knoppndvlem18
35405 knoppndvlem19
35406 knoppndvlem21
35408 cnndvlem1
35413 iccioo01
36208 sin2h
36478 cos2h
36479 tan2h
36480 itg2addnclem
36539 3lexlogpow5ineq2
40920 3lexlogpow5ineq4
40921 3lexlogpow5ineq3
40922 3lexlogpow2ineq1
40923 3lexlogpow2ineq2
40924 3lexlogpow5ineq5
40925 aks4d1lem1
40927 aks4d1p1p3
40934 aks4d1p1p2
40935 aks4d1p1p4
40936 aks4d1p1p6
40938 aks4d1p1p7
40939 aks4d1p1p5
40940 aks4d1p1
40941 aks4d1p2
40942 aks4d1p3
40943 aks4d1p5
40945 aks4d1p6
40946 aks4d1p7d1
40947 aks4d1p7
40948 aks4d1p8
40952 aks4d1p9
40953 2ap1caineq
40961 oexpreposd
41212 pellfundex
41624 jm2.22
41734 jm2.23
41735 imo72b2lem0
42917 sumnnodd
44346 sinaover2ne0
44584 stoweidlem14
44730 stoweidlem49
44765 stoweidlem52
44768 wallispilem4
44784 wallispi2lem2
44788 stirlinglem6
44795 stirlinglem15
44804 stirlingr
44806 dirkerval2
44810 dirkertrigeqlem3
44816 dirkercncflem4
44822 fourierdlem24
44847 fourierdlem79
44901 fourierdlem103
44925 fourierdlem104
44926 fourierdlem112
44934 fourierswlem
44946 fouriersw
44947 lighneallem4a
46276 nnoALTV
46363 nn0oALTV
46364 nn0e
46365 nneven
46366 evengpoap3
46467 nn0eo
47214 flnn0div2ge
47219 fldivexpfllog2
47251 fllog2
47254 blennngt2o2
47278 dignn0flhalf
47304 sepfsepc
47560 |