![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3pos | Structured version Visualization version GIF version |
Description: The number 3 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
3pos | ⊢ 0 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12367 | . . 3 ⊢ 2 ∈ ℝ | |
2 | 1re 11290 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 2pos 12396 | . . 3 ⊢ 0 < 2 | |
4 | 0lt1 11812 | . . 3 ⊢ 0 < 1 | |
5 | 1, 2, 3, 4 | addgt0ii 11832 | . 2 ⊢ 0 < (2 + 1) |
6 | df-3 12357 | . 2 ⊢ 3 = (2 + 1) | |
7 | 5, 6 | breqtrri 5193 | 1 ⊢ 0 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5166 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 2c2 12348 3c3 12349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-2 12356 df-3 12357 |
This theorem is referenced by: 3ne0 12399 4pos 12400 3rp 13063 fz0to4untppr 13687 fz0to5un2tp 13688 s4fv0 14944 01sqrexlem7 15297 sqrt9 15322 ef01bndlem 16232 cos2bnd 16236 sin01gt0 16238 cos01gt0 16239 rpnnen2lem3 16264 rpnnen2lem4 16265 rpnnen2lem9 16270 flodddiv4 16461 43prm 17169 slotsdifunifndx 17460 cnfldfunALTOLDOLD 21416 tangtx 26565 sincos6thpi 26576 pige3ALT 26580 log2cnv 27005 log2tlbnd 27006 ppiub 27266 bposlem2 27347 bposlem3 27348 bposlem4 27349 bposlem5 27350 lgsdir2lem1 27387 dchrvmasumiflem1 27563 tgcgr4 28557 frgrogt3nreg 30429 friendshipgt3 30430 ex-gcd 30489 cyc3fv3 33132 cyc3conja 33150 evl1deg3 33568 2sqr3minply 33738 hgt750lemd 34625 hgt750lem2 34629 heiborlem5 37775 heiborlem7 37777 3lexlogpow5ineq2 42012 3lexlogpow5ineq4 42013 3lexlogpow5ineq3 42014 3lexlogpow2ineq1 42015 3lexlogpow2ineq2 42016 3lexlogpow5ineq5 42017 aks4d1lem1 42019 aks4d1p1p6 42030 aks4d1p1p5 42032 aks4d1p1 42033 aks4d1p2 42034 aks4d1p3 42035 aks4d1p5 42037 aks4d1p6 42038 aks4d1p7d1 42039 aks4d1p7 42040 aks4d1p8 42044 aks4d1p9 42045 aks6d1c7lem1 42137 aks6d1c7lem2 42138 aks6d1c7 42141 aks5lem6 42149 aks5lem8 42158 acos1half 42340 jm2.23 42953 stoweidlem13 45934 stoweidlem26 45947 stoweidlem34 45955 stoweidlem42 45963 stoweidlem59 45980 stoweid 45984 wallispilem4 45989 smfmullem4 46715 257prm 47435 127prm 47473 nfermltl2rev 47617 usgrexmpl1lem 47836 usgrexmpl2lem 47841 usgrexmpl2nb0 47846 sepfsepc 48607 |
Copyright terms: Public domain | W3C validator |