Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3pos | Structured version Visualization version GIF version |
Description: The number 3 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
3pos | ⊢ 0 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 11977 | . . 3 ⊢ 2 ∈ ℝ | |
2 | 1re 10906 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 2pos 12006 | . . 3 ⊢ 0 < 2 | |
4 | 0lt1 11427 | . . 3 ⊢ 0 < 1 | |
5 | 1, 2, 3, 4 | addgt0ii 11447 | . 2 ⊢ 0 < (2 + 1) |
6 | df-3 11967 | . 2 ⊢ 3 = (2 + 1) | |
7 | 5, 6 | breqtrri 5097 | 1 ⊢ 0 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5070 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 2c2 11958 3c3 11959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-2 11966 df-3 11967 |
This theorem is referenced by: 3ne0 12009 4pos 12010 3rp 12665 fz0to4untppr 13288 s4fv0 14536 sqrlem7 14888 sqrt9 14913 ef01bndlem 15821 cos2bnd 15825 sin01gt0 15827 cos01gt0 15828 rpnnen2lem3 15853 rpnnen2lem4 15854 rpnnen2lem9 15859 flodddiv4 16050 43prm 16751 cnfldfun 20522 tangtx 25567 sincos6thpi 25577 pige3ALT 25581 log2cnv 25999 log2tlbnd 26000 ppiub 26257 bposlem2 26338 bposlem3 26339 bposlem4 26340 bposlem5 26341 lgsdir2lem1 26378 dchrvmasumiflem1 26554 tgcgr4 26796 frgrogt3nreg 28662 friendshipgt3 28663 ex-gcd 28722 cyc3fv3 31308 cyc3conja 31326 hgt750lemd 32528 hgt750lem2 32532 heiborlem5 35900 heiborlem7 35902 3lexlogpow5ineq2 39991 3lexlogpow5ineq4 39992 3lexlogpow5ineq3 39993 3lexlogpow2ineq1 39994 3lexlogpow2ineq2 39995 3lexlogpow5ineq5 39996 aks4d1lem1 39998 aks4d1p1p6 40009 aks4d1p1p5 40011 aks4d1p1 40012 aks4d1p2 40013 aks4d1p3 40014 aks4d1p5 40016 aks4d1p6 40017 aks4d1p7d1 40018 aks4d1p7 40019 aks4d1p8 40023 aks4d1p9 40024 acos1half 40098 jm2.23 40734 stoweidlem13 43444 stoweidlem26 43457 stoweidlem34 43465 stoweidlem42 43473 stoweidlem59 43490 stoweid 43494 wallispilem4 43499 smfmullem4 44215 257prm 44901 127prm 44939 nfermltl2rev 45083 sepfsepc 46109 |
Copyright terms: Public domain | W3C validator |