![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3pos | Structured version Visualization version GIF version |
Description: The number 3 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
3pos | ⊢ 0 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12337 | . . 3 ⊢ 2 ∈ ℝ | |
2 | 1re 11258 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 2pos 12366 | . . 3 ⊢ 0 < 2 | |
4 | 0lt1 11782 | . . 3 ⊢ 0 < 1 | |
5 | 1, 2, 3, 4 | addgt0ii 11802 | . 2 ⊢ 0 < (2 + 1) |
6 | df-3 12327 | . 2 ⊢ 3 = (2 + 1) | |
7 | 5, 6 | breqtrri 5174 | 1 ⊢ 0 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5147 (class class class)co 7430 0cc0 11152 1c1 11153 + caddc 11155 < clt 11292 2c2 12318 3c3 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-2 12326 df-3 12327 |
This theorem is referenced by: 3ne0 12369 4pos 12370 3rp 13037 fz0to4untppr 13666 fz0to5un2tp 13667 s4fv0 14930 01sqrexlem7 15283 sqrt9 15308 ef01bndlem 16216 cos2bnd 16220 sin01gt0 16222 cos01gt0 16223 rpnnen2lem3 16248 rpnnen2lem4 16249 rpnnen2lem9 16254 flodddiv4 16448 43prm 17155 slotsdifunifndx 17446 cnfldfunALTOLDOLD 21410 tangtx 26561 sincos6thpi 26572 pige3ALT 26576 log2cnv 27001 log2tlbnd 27002 ppiub 27262 bposlem2 27343 bposlem3 27344 bposlem4 27345 bposlem5 27346 lgsdir2lem1 27383 dchrvmasumiflem1 27559 tgcgr4 28553 frgrogt3nreg 30425 friendshipgt3 30426 ex-gcd 30485 cyc3fv3 33141 cyc3conja 33159 evl1deg3 33582 2sqr3minply 33752 hgt750lemd 34641 hgt750lem2 34645 heiborlem5 37801 heiborlem7 37803 3lexlogpow5ineq2 42036 3lexlogpow5ineq4 42037 3lexlogpow5ineq3 42038 3lexlogpow2ineq1 42039 3lexlogpow2ineq2 42040 3lexlogpow5ineq5 42041 aks4d1lem1 42043 aks4d1p1p6 42054 aks4d1p1p5 42056 aks4d1p1 42057 aks4d1p2 42058 aks4d1p3 42059 aks4d1p5 42061 aks4d1p6 42062 aks4d1p7d1 42063 aks4d1p7 42064 aks4d1p8 42068 aks4d1p9 42069 aks6d1c7lem1 42161 aks6d1c7lem2 42162 aks6d1c7 42165 aks5lem6 42173 aks5lem8 42182 acos1half 42366 jm2.23 42984 stoweidlem13 45968 stoweidlem26 45981 stoweidlem34 45989 stoweidlem42 45997 stoweidlem59 46014 stoweid 46018 wallispilem4 46023 smfmullem4 46749 257prm 47485 127prm 47523 nfermltl2rev 47667 usgrexmpl1lem 47915 usgrexmpl2lem 47920 usgrexmpl2nb0 47925 gpgusgralem 47945 sepfsepc 48723 |
Copyright terms: Public domain | W3C validator |