| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9pos | Structured version Visualization version GIF version | ||
| Description: The number 9 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9pos | ⊢ 0 < 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8re 12328 | . . 3 ⊢ 8 ∈ ℝ | |
| 2 | 1re 11227 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 8pos 12344 | . . 3 ⊢ 0 < 8 | |
| 4 | 0lt1 11751 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 11771 | . 2 ⊢ 0 < (8 + 1) |
| 6 | df-9 12302 | . 2 ⊢ 9 = (8 + 1) | |
| 7 | 5, 6 | breqtrri 5143 | 1 ⊢ 0 < 9 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5116 (class class class)co 7399 0cc0 11121 1c1 11122 + caddc 11124 < clt 11261 8c8 12293 9c9 12294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 |
| This theorem is referenced by: 0.999... 15884 cos2bnd 16191 sincos2sgn 16197 sqrt2cxp2logb9e3 26745 log2tlbnd 26891 bposlem4 27234 bposlem5 27235 hgt750lem 34604 3lexlogpow5ineq2 41990 aks4d1lem1 41997 aks4d1p1 42011 aks4d1p6 42016 aks4d1p7d1 42017 aks4d1p7 42018 aks4d1p8 42022 9rp 42276 257prm 47493 31prm 47529 nfermltl2rev 47675 |
| Copyright terms: Public domain | W3C validator |