![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > affineequiv2 | Structured version Visualization version GIF version |
Description: Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
affineequiv.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
affineequiv.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
affineequiv.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
affineequiv.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
affineequiv2 | ⊢ (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵 − 𝐴) = ((1 − 𝐷) · (𝐶 − 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | affineequiv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | affineequiv.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | affineequiv.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | affineequiv.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
5 | 1, 2, 3, 4 | affineequiv 26742 | . 2 ⊢ (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶 − 𝐵) = (𝐷 · (𝐶 − 𝐴)))) |
6 | 3, 1 | subcld 11593 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) ∈ ℂ) |
7 | 3, 2 | subcld 11593 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐵) ∈ ℂ) |
8 | 4, 6 | mulcld 11256 | . . 3 ⊢ (𝜑 → (𝐷 · (𝐶 − 𝐴)) ∈ ℂ) |
9 | 6, 7, 8 | subcanad 11636 | . 2 ⊢ (𝜑 → (((𝐶 − 𝐴) − (𝐶 − 𝐵)) = ((𝐶 − 𝐴) − (𝐷 · (𝐶 − 𝐴))) ↔ (𝐶 − 𝐵) = (𝐷 · (𝐶 − 𝐴)))) |
10 | 3, 1, 2 | nnncan1d 11627 | . . 3 ⊢ (𝜑 → ((𝐶 − 𝐴) − (𝐶 − 𝐵)) = (𝐵 − 𝐴)) |
11 | 1cnd 11231 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
12 | 11, 4, 6 | subdird 11693 | . . . 4 ⊢ (𝜑 → ((1 − 𝐷) · (𝐶 − 𝐴)) = ((1 · (𝐶 − 𝐴)) − (𝐷 · (𝐶 − 𝐴)))) |
13 | 6 | mullidd 11254 | . . . . 5 ⊢ (𝜑 → (1 · (𝐶 − 𝐴)) = (𝐶 − 𝐴)) |
14 | 13 | oveq1d 7429 | . . . 4 ⊢ (𝜑 → ((1 · (𝐶 − 𝐴)) − (𝐷 · (𝐶 − 𝐴))) = ((𝐶 − 𝐴) − (𝐷 · (𝐶 − 𝐴)))) |
15 | 12, 14 | eqtr2d 2768 | . . 3 ⊢ (𝜑 → ((𝐶 − 𝐴) − (𝐷 · (𝐶 − 𝐴))) = ((1 − 𝐷) · (𝐶 − 𝐴))) |
16 | 10, 15 | eqeq12d 2743 | . 2 ⊢ (𝜑 → (((𝐶 − 𝐴) − (𝐶 − 𝐵)) = ((𝐶 − 𝐴) − (𝐷 · (𝐶 − 𝐴))) ↔ (𝐵 − 𝐴) = ((1 − 𝐷) · (𝐶 − 𝐴)))) |
17 | 5, 9, 16 | 3bitr2d 307 | 1 ⊢ (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵 − 𝐴) = ((1 − 𝐷) · (𝐶 − 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 (class class class)co 7414 ℂcc 11128 1c1 11131 + caddc 11133 · cmul 11135 − cmin 11466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-ltxr 11275 df-sub 11468 |
This theorem is referenced by: chordthmlem4 26754 |
Copyright terms: Public domain | W3C validator |