MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv2 Structured version   Visualization version   GIF version

Theorem affineequiv2 26882
Description: Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))

Proof of Theorem affineequiv2
StepHypRef Expression
1 affineequiv.a . . 3 (𝜑𝐴 ∈ ℂ)
2 affineequiv.b . . 3 (𝜑𝐵 ∈ ℂ)
3 affineequiv.c . . 3 (𝜑𝐶 ∈ ℂ)
4 affineequiv.d . . 3 (𝜑𝐷 ∈ ℂ)
51, 2, 3, 4affineequiv 26881 . 2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
63, 1subcld 11618 . . 3 (𝜑 → (𝐶𝐴) ∈ ℂ)
73, 2subcld 11618 . . 3 (𝜑 → (𝐶𝐵) ∈ ℂ)
84, 6mulcld 11279 . . 3 (𝜑 → (𝐷 · (𝐶𝐴)) ∈ ℂ)
96, 7, 8subcanad 11661 . 2 (𝜑 → (((𝐶𝐴) − (𝐶𝐵)) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
103, 1, 2nnncan1d 11652 . . 3 (𝜑 → ((𝐶𝐴) − (𝐶𝐵)) = (𝐵𝐴))
11 1cnd 11254 . . . . 5 (𝜑 → 1 ∈ ℂ)
1211, 4, 6subdird 11718 . . . 4 (𝜑 → ((1 − 𝐷) · (𝐶𝐴)) = ((1 · (𝐶𝐴)) − (𝐷 · (𝐶𝐴))))
136mullidd 11277 . . . . 5 (𝜑 → (1 · (𝐶𝐴)) = (𝐶𝐴))
1413oveq1d 7446 . . . 4 (𝜑 → ((1 · (𝐶𝐴)) − (𝐷 · (𝐶𝐴))) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))))
1512, 14eqtr2d 2776 . . 3 (𝜑 → ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) = ((1 − 𝐷) · (𝐶𝐴)))
1610, 15eqeq12d 2751 . 2 (𝜑 → (((𝐶𝐴) − (𝐶𝐵)) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))
175, 9, 163bitr2d 307 1 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-sub 11492
This theorem is referenced by:  chordthmlem4  26893
  Copyright terms: Public domain W3C validator