MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv2 Structured version   Visualization version   GIF version

Theorem affineequiv2 26734
Description: Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))

Proof of Theorem affineequiv2
StepHypRef Expression
1 affineequiv.a . . 3 (𝜑𝐴 ∈ ℂ)
2 affineequiv.b . . 3 (𝜑𝐵 ∈ ℂ)
3 affineequiv.c . . 3 (𝜑𝐶 ∈ ℂ)
4 affineequiv.d . . 3 (𝜑𝐷 ∈ ℂ)
51, 2, 3, 4affineequiv 26733 . 2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
63, 1subcld 11533 . . 3 (𝜑 → (𝐶𝐴) ∈ ℂ)
73, 2subcld 11533 . . 3 (𝜑 → (𝐶𝐵) ∈ ℂ)
84, 6mulcld 11194 . . 3 (𝜑 → (𝐷 · (𝐶𝐴)) ∈ ℂ)
96, 7, 8subcanad 11576 . 2 (𝜑 → (((𝐶𝐴) − (𝐶𝐵)) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
103, 1, 2nnncan1d 11567 . . 3 (𝜑 → ((𝐶𝐴) − (𝐶𝐵)) = (𝐵𝐴))
11 1cnd 11169 . . . . 5 (𝜑 → 1 ∈ ℂ)
1211, 4, 6subdird 11635 . . . 4 (𝜑 → ((1 − 𝐷) · (𝐶𝐴)) = ((1 · (𝐶𝐴)) − (𝐷 · (𝐶𝐴))))
136mullidd 11192 . . . . 5 (𝜑 → (1 · (𝐶𝐴)) = (𝐶𝐴))
1413oveq1d 7402 . . . 4 (𝜑 → ((1 · (𝐶𝐴)) − (𝐷 · (𝐶𝐴))) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))))
1512, 14eqtr2d 2765 . . 3 (𝜑 → ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) = ((1 − 𝐷) · (𝐶𝐴)))
1610, 15eqeq12d 2745 . 2 (𝜑 → (((𝐶𝐴) − (𝐶𝐵)) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))
175, 9, 163bitr2d 307 1 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407
This theorem is referenced by:  chordthmlem4  26745
  Copyright terms: Public domain W3C validator