MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv2 Structured version   Visualization version   GIF version

Theorem affineequiv2 25974
Description: Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))

Proof of Theorem affineequiv2
StepHypRef Expression
1 affineequiv.a . . 3 (𝜑𝐴 ∈ ℂ)
2 affineequiv.b . . 3 (𝜑𝐵 ∈ ℂ)
3 affineequiv.c . . 3 (𝜑𝐶 ∈ ℂ)
4 affineequiv.d . . 3 (𝜑𝐷 ∈ ℂ)
51, 2, 3, 4affineequiv 25973 . 2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
63, 1subcld 11332 . . 3 (𝜑 → (𝐶𝐴) ∈ ℂ)
73, 2subcld 11332 . . 3 (𝜑 → (𝐶𝐵) ∈ ℂ)
84, 6mulcld 10995 . . 3 (𝜑 → (𝐷 · (𝐶𝐴)) ∈ ℂ)
96, 7, 8subcanad 11375 . 2 (𝜑 → (((𝐶𝐴) − (𝐶𝐵)) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
103, 1, 2nnncan1d 11366 . . 3 (𝜑 → ((𝐶𝐴) − (𝐶𝐵)) = (𝐵𝐴))
11 1cnd 10970 . . . . 5 (𝜑 → 1 ∈ ℂ)
1211, 4, 6subdird 11432 . . . 4 (𝜑 → ((1 − 𝐷) · (𝐶𝐴)) = ((1 · (𝐶𝐴)) − (𝐷 · (𝐶𝐴))))
136mulid2d 10993 . . . . 5 (𝜑 → (1 · (𝐶𝐴)) = (𝐶𝐴))
1413oveq1d 7290 . . . 4 (𝜑 → ((1 · (𝐶𝐴)) − (𝐷 · (𝐶𝐴))) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))))
1512, 14eqtr2d 2779 . . 3 (𝜑 → ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) = ((1 − 𝐷) · (𝐶𝐴)))
1610, 15eqeq12d 2754 . 2 (𝜑 → (((𝐶𝐴) − (𝐶𝐵)) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))
175, 9, 163bitr2d 307 1 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207
This theorem is referenced by:  chordthmlem4  25985
  Copyright terms: Public domain W3C validator