MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv2 Structured version   Visualization version   GIF version

Theorem affineequiv2 25410
Description: Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))

Proof of Theorem affineequiv2
StepHypRef Expression
1 affineequiv.a . . 3 (𝜑𝐴 ∈ ℂ)
2 affineequiv.b . . 3 (𝜑𝐵 ∈ ℂ)
3 affineequiv.c . . 3 (𝜑𝐶 ∈ ℂ)
4 affineequiv.d . . 3 (𝜑𝐷 ∈ ℂ)
51, 2, 3, 4affineequiv 25409 . 2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
63, 1subcld 10986 . . 3 (𝜑 → (𝐶𝐴) ∈ ℂ)
73, 2subcld 10986 . . 3 (𝜑 → (𝐶𝐵) ∈ ℂ)
84, 6mulcld 10650 . . 3 (𝜑 → (𝐷 · (𝐶𝐴)) ∈ ℂ)
96, 7, 8subcanad 11029 . 2 (𝜑 → (((𝐶𝐴) − (𝐶𝐵)) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
103, 1, 2nnncan1d 11020 . . 3 (𝜑 → ((𝐶𝐴) − (𝐶𝐵)) = (𝐵𝐴))
11 1cnd 10625 . . . . 5 (𝜑 → 1 ∈ ℂ)
1211, 4, 6subdird 11086 . . . 4 (𝜑 → ((1 − 𝐷) · (𝐶𝐴)) = ((1 · (𝐶𝐴)) − (𝐷 · (𝐶𝐴))))
136mulid2d 10648 . . . . 5 (𝜑 → (1 · (𝐶𝐴)) = (𝐶𝐴))
1413oveq1d 7150 . . . 4 (𝜑 → ((1 · (𝐶𝐴)) − (𝐷 · (𝐶𝐴))) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))))
1512, 14eqtr2d 2834 . . 3 (𝜑 → ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) = ((1 − 𝐷) · (𝐶𝐴)))
1610, 15eqeq12d 2814 . 2 (𝜑 → (((𝐶𝐴) − (𝐶𝐵)) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))
175, 9, 163bitr2d 310 1 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  (class class class)co 7135  cc 10524  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861
This theorem is referenced by:  chordthmlem4  25421
  Copyright terms: Public domain W3C validator