MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv2 Structured version   Visualization version   GIF version

Theorem affineequiv2 25879
Description: Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))

Proof of Theorem affineequiv2
StepHypRef Expression
1 affineequiv.a . . 3 (𝜑𝐴 ∈ ℂ)
2 affineequiv.b . . 3 (𝜑𝐵 ∈ ℂ)
3 affineequiv.c . . 3 (𝜑𝐶 ∈ ℂ)
4 affineequiv.d . . 3 (𝜑𝐷 ∈ ℂ)
51, 2, 3, 4affineequiv 25878 . 2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
63, 1subcld 11262 . . 3 (𝜑 → (𝐶𝐴) ∈ ℂ)
73, 2subcld 11262 . . 3 (𝜑 → (𝐶𝐵) ∈ ℂ)
84, 6mulcld 10926 . . 3 (𝜑 → (𝐷 · (𝐶𝐴)) ∈ ℂ)
96, 7, 8subcanad 11305 . 2 (𝜑 → (((𝐶𝐴) − (𝐶𝐵)) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
103, 1, 2nnncan1d 11296 . . 3 (𝜑 → ((𝐶𝐴) − (𝐶𝐵)) = (𝐵𝐴))
11 1cnd 10901 . . . . 5 (𝜑 → 1 ∈ ℂ)
1211, 4, 6subdird 11362 . . . 4 (𝜑 → ((1 − 𝐷) · (𝐶𝐴)) = ((1 · (𝐶𝐴)) − (𝐷 · (𝐶𝐴))))
136mulid2d 10924 . . . . 5 (𝜑 → (1 · (𝐶𝐴)) = (𝐶𝐴))
1413oveq1d 7270 . . . 4 (𝜑 → ((1 · (𝐶𝐴)) − (𝐷 · (𝐶𝐴))) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))))
1512, 14eqtr2d 2779 . . 3 (𝜑 → ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) = ((1 − 𝐷) · (𝐶𝐴)))
1610, 15eqeq12d 2754 . 2 (𝜑 → (((𝐶𝐴) − (𝐶𝐵)) = ((𝐶𝐴) − (𝐷 · (𝐶𝐴))) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))
175, 9, 163bitr2d 306 1 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵𝐴) = ((1 − 𝐷) · (𝐶𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137
This theorem is referenced by:  chordthmlem4  25890
  Copyright terms: Public domain W3C validator