![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > affineequiv2 | Structured version Visualization version GIF version |
Description: Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
affineequiv.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
affineequiv.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
affineequiv.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
affineequiv.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
affineequiv2 | ⊢ (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵 − 𝐴) = ((1 − 𝐷) · (𝐶 − 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | affineequiv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | affineequiv.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | affineequiv.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | affineequiv.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
5 | 1, 2, 3, 4 | affineequiv 26884 | . 2 ⊢ (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶 − 𝐵) = (𝐷 · (𝐶 − 𝐴)))) |
6 | 3, 1 | subcld 11647 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) ∈ ℂ) |
7 | 3, 2 | subcld 11647 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐵) ∈ ℂ) |
8 | 4, 6 | mulcld 11310 | . . 3 ⊢ (𝜑 → (𝐷 · (𝐶 − 𝐴)) ∈ ℂ) |
9 | 6, 7, 8 | subcanad 11690 | . 2 ⊢ (𝜑 → (((𝐶 − 𝐴) − (𝐶 − 𝐵)) = ((𝐶 − 𝐴) − (𝐷 · (𝐶 − 𝐴))) ↔ (𝐶 − 𝐵) = (𝐷 · (𝐶 − 𝐴)))) |
10 | 3, 1, 2 | nnncan1d 11681 | . . 3 ⊢ (𝜑 → ((𝐶 − 𝐴) − (𝐶 − 𝐵)) = (𝐵 − 𝐴)) |
11 | 1cnd 11285 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
12 | 11, 4, 6 | subdird 11747 | . . . 4 ⊢ (𝜑 → ((1 − 𝐷) · (𝐶 − 𝐴)) = ((1 · (𝐶 − 𝐴)) − (𝐷 · (𝐶 − 𝐴)))) |
13 | 6 | mullidd 11308 | . . . . 5 ⊢ (𝜑 → (1 · (𝐶 − 𝐴)) = (𝐶 − 𝐴)) |
14 | 13 | oveq1d 7463 | . . . 4 ⊢ (𝜑 → ((1 · (𝐶 − 𝐴)) − (𝐷 · (𝐶 − 𝐴))) = ((𝐶 − 𝐴) − (𝐷 · (𝐶 − 𝐴)))) |
15 | 12, 14 | eqtr2d 2781 | . . 3 ⊢ (𝜑 → ((𝐶 − 𝐴) − (𝐷 · (𝐶 − 𝐴))) = ((1 − 𝐷) · (𝐶 − 𝐴))) |
16 | 10, 15 | eqeq12d 2756 | . 2 ⊢ (𝜑 → (((𝐶 − 𝐴) − (𝐶 − 𝐵)) = ((𝐶 − 𝐴) − (𝐷 · (𝐶 − 𝐴))) ↔ (𝐵 − 𝐴) = ((1 − 𝐷) · (𝐶 − 𝐴)))) |
17 | 5, 9, 16 | 3bitr2d 307 | 1 ⊢ (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵 − 𝐴) = ((1 − 𝐷) · (𝐶 − 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 |
This theorem is referenced by: chordthmlem4 26896 |
Copyright terms: Public domain | W3C validator |