Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > affineequiv3 | Structured version Visualization version GIF version |
Description: Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶. (Contributed by AV, 22-Jan-2023.) |
Ref | Expression |
---|---|
affineequiv.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
affineequiv.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
affineequiv.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
affineequiv.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
affineequiv3 | ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 10674 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
2 | affineequiv.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
3 | 1, 2 | subcld 11035 | . . . . 5 ⊢ (𝜑 → (1 − 𝐷) ∈ ℂ) |
4 | affineequiv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | 3, 4 | mulcld 10699 | . . . 4 ⊢ (𝜑 → ((1 − 𝐷) · 𝐵) ∈ ℂ) |
6 | affineequiv.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
7 | 2, 6 | mulcld 10699 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐶) ∈ ℂ) |
8 | 5, 7 | addcomd 10880 | . . 3 ⊢ (𝜑 → (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵))) |
9 | 8 | eqeq2d 2769 | . 2 ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)))) |
10 | affineequiv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
11 | 6, 10, 4, 2 | affineequiv 25508 | . 2 ⊢ (𝜑 → (𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)) ↔ (𝐵 − 𝐴) = (𝐷 · (𝐵 − 𝐶)))) |
12 | 10, 4 | negsubdi2d 11051 | . . . . 5 ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
13 | 12 | eqcomd 2764 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) = -(𝐴 − 𝐵)) |
14 | 13 | eqeq1d 2760 | . . 3 ⊢ (𝜑 → ((𝐵 − 𝐴) = (𝐷 · (𝐵 − 𝐶)) ↔ -(𝐴 − 𝐵) = (𝐷 · (𝐵 − 𝐶)))) |
15 | 6, 4 | negsubdi2d 11051 | . . . . . . 7 ⊢ (𝜑 → -(𝐶 − 𝐵) = (𝐵 − 𝐶)) |
16 | 15 | eqcomd 2764 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐶) = -(𝐶 − 𝐵)) |
17 | 16 | oveq2d 7166 | . . . . 5 ⊢ (𝜑 → (𝐷 · (𝐵 − 𝐶)) = (𝐷 · -(𝐶 − 𝐵))) |
18 | 6, 4 | subcld 11035 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 𝐵) ∈ ℂ) |
19 | 2, 18 | mulneg2d 11132 | . . . . 5 ⊢ (𝜑 → (𝐷 · -(𝐶 − 𝐵)) = -(𝐷 · (𝐶 − 𝐵))) |
20 | 17, 19 | eqtrd 2793 | . . . 4 ⊢ (𝜑 → (𝐷 · (𝐵 − 𝐶)) = -(𝐷 · (𝐶 − 𝐵))) |
21 | 20 | eqeq2d 2769 | . . 3 ⊢ (𝜑 → (-(𝐴 − 𝐵) = (𝐷 · (𝐵 − 𝐶)) ↔ -(𝐴 − 𝐵) = -(𝐷 · (𝐶 − 𝐵)))) |
22 | 10, 4 | subcld 11035 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
23 | 2, 18 | mulcld 10699 | . . . 4 ⊢ (𝜑 → (𝐷 · (𝐶 − 𝐵)) ∈ ℂ) |
24 | 22, 23 | neg11ad 11031 | . . 3 ⊢ (𝜑 → (-(𝐴 − 𝐵) = -(𝐷 · (𝐶 − 𝐵)) ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) |
25 | 14, 21, 24 | 3bitrd 308 | . 2 ⊢ (𝜑 → ((𝐵 − 𝐴) = (𝐷 · (𝐵 − 𝐶)) ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) |
26 | 9, 11, 25 | 3bitrd 308 | 1 ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 (class class class)co 7150 ℂcc 10573 1c1 10576 + caddc 10578 · cmul 10580 − cmin 10908 -cneg 10909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-ltxr 10718 df-sub 10910 df-neg 10911 |
This theorem is referenced by: affineequiv4 25511 affineequivne 25512 |
Copyright terms: Public domain | W3C validator |