MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv3 Structured version   Visualization version   GIF version

Theorem affineequiv3 25975
Description: Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv3 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))

Proof of Theorem affineequiv3
StepHypRef Expression
1 1cnd 10970 . . . . . 6 (𝜑 → 1 ∈ ℂ)
2 affineequiv.d . . . . . 6 (𝜑𝐷 ∈ ℂ)
31, 2subcld 11332 . . . . 5 (𝜑 → (1 − 𝐷) ∈ ℂ)
4 affineequiv.b . . . . 5 (𝜑𝐵 ∈ ℂ)
53, 4mulcld 10995 . . . 4 (𝜑 → ((1 − 𝐷) · 𝐵) ∈ ℂ)
6 affineequiv.c . . . . 5 (𝜑𝐶 ∈ ℂ)
72, 6mulcld 10995 . . . 4 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
85, 7addcomd 11177 . . 3 (𝜑 → (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)))
98eqeq2d 2749 . 2 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵))))
10 affineequiv.a . . 3 (𝜑𝐴 ∈ ℂ)
116, 10, 4, 2affineequiv 25973 . 2 (𝜑 → (𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)) ↔ (𝐵𝐴) = (𝐷 · (𝐵𝐶))))
1210, 4negsubdi2d 11348 . . . . 5 (𝜑 → -(𝐴𝐵) = (𝐵𝐴))
1312eqcomd 2744 . . . 4 (𝜑 → (𝐵𝐴) = -(𝐴𝐵))
1413eqeq1d 2740 . . 3 (𝜑 → ((𝐵𝐴) = (𝐷 · (𝐵𝐶)) ↔ -(𝐴𝐵) = (𝐷 · (𝐵𝐶))))
156, 4negsubdi2d 11348 . . . . . . 7 (𝜑 → -(𝐶𝐵) = (𝐵𝐶))
1615eqcomd 2744 . . . . . 6 (𝜑 → (𝐵𝐶) = -(𝐶𝐵))
1716oveq2d 7291 . . . . 5 (𝜑 → (𝐷 · (𝐵𝐶)) = (𝐷 · -(𝐶𝐵)))
186, 4subcld 11332 . . . . . 6 (𝜑 → (𝐶𝐵) ∈ ℂ)
192, 18mulneg2d 11429 . . . . 5 (𝜑 → (𝐷 · -(𝐶𝐵)) = -(𝐷 · (𝐶𝐵)))
2017, 19eqtrd 2778 . . . 4 (𝜑 → (𝐷 · (𝐵𝐶)) = -(𝐷 · (𝐶𝐵)))
2120eqeq2d 2749 . . 3 (𝜑 → (-(𝐴𝐵) = (𝐷 · (𝐵𝐶)) ↔ -(𝐴𝐵) = -(𝐷 · (𝐶𝐵))))
2210, 4subcld 11332 . . . 4 (𝜑 → (𝐴𝐵) ∈ ℂ)
232, 18mulcld 10995 . . . 4 (𝜑 → (𝐷 · (𝐶𝐵)) ∈ ℂ)
2422, 23neg11ad 11328 . . 3 (𝜑 → (-(𝐴𝐵) = -(𝐷 · (𝐶𝐵)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
2514, 21, 243bitrd 305 . 2 (𝜑 → ((𝐵𝐴) = (𝐷 · (𝐵𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
269, 11, 253bitrd 305 1 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208
This theorem is referenced by:  affineequiv4  25976  affineequivne  25977
  Copyright terms: Public domain W3C validator