Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv3 Structured version   Visualization version   GIF version

Theorem affineequiv3 25510
 Description: Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv3 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))

Proof of Theorem affineequiv3
StepHypRef Expression
1 1cnd 10674 . . . . . 6 (𝜑 → 1 ∈ ℂ)
2 affineequiv.d . . . . . 6 (𝜑𝐷 ∈ ℂ)
31, 2subcld 11035 . . . . 5 (𝜑 → (1 − 𝐷) ∈ ℂ)
4 affineequiv.b . . . . 5 (𝜑𝐵 ∈ ℂ)
53, 4mulcld 10699 . . . 4 (𝜑 → ((1 − 𝐷) · 𝐵) ∈ ℂ)
6 affineequiv.c . . . . 5 (𝜑𝐶 ∈ ℂ)
72, 6mulcld 10699 . . . 4 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
85, 7addcomd 10880 . . 3 (𝜑 → (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)))
98eqeq2d 2769 . 2 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵))))
10 affineequiv.a . . 3 (𝜑𝐴 ∈ ℂ)
116, 10, 4, 2affineequiv 25508 . 2 (𝜑 → (𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)) ↔ (𝐵𝐴) = (𝐷 · (𝐵𝐶))))
1210, 4negsubdi2d 11051 . . . . 5 (𝜑 → -(𝐴𝐵) = (𝐵𝐴))
1312eqcomd 2764 . . . 4 (𝜑 → (𝐵𝐴) = -(𝐴𝐵))
1413eqeq1d 2760 . . 3 (𝜑 → ((𝐵𝐴) = (𝐷 · (𝐵𝐶)) ↔ -(𝐴𝐵) = (𝐷 · (𝐵𝐶))))
156, 4negsubdi2d 11051 . . . . . . 7 (𝜑 → -(𝐶𝐵) = (𝐵𝐶))
1615eqcomd 2764 . . . . . 6 (𝜑 → (𝐵𝐶) = -(𝐶𝐵))
1716oveq2d 7166 . . . . 5 (𝜑 → (𝐷 · (𝐵𝐶)) = (𝐷 · -(𝐶𝐵)))
186, 4subcld 11035 . . . . . 6 (𝜑 → (𝐶𝐵) ∈ ℂ)
192, 18mulneg2d 11132 . . . . 5 (𝜑 → (𝐷 · -(𝐶𝐵)) = -(𝐷 · (𝐶𝐵)))
2017, 19eqtrd 2793 . . . 4 (𝜑 → (𝐷 · (𝐵𝐶)) = -(𝐷 · (𝐶𝐵)))
2120eqeq2d 2769 . . 3 (𝜑 → (-(𝐴𝐵) = (𝐷 · (𝐵𝐶)) ↔ -(𝐴𝐵) = -(𝐷 · (𝐶𝐵))))
2210, 4subcld 11035 . . . 4 (𝜑 → (𝐴𝐵) ∈ ℂ)
232, 18mulcld 10699 . . . 4 (𝜑 → (𝐷 · (𝐶𝐵)) ∈ ℂ)
2422, 23neg11ad 11031 . . 3 (𝜑 → (-(𝐴𝐵) = -(𝐷 · (𝐶𝐵)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
2514, 21, 243bitrd 308 . 2 (𝜑 → ((𝐵𝐴) = (𝐷 · (𝐵𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
269, 11, 253bitrd 308 1 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111  (class class class)co 7150  ℂcc 10573  1c1 10576   + caddc 10578   · cmul 10580   − cmin 10908  -cneg 10909 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-po 5443  df-so 5444  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-ltxr 10718  df-sub 10910  df-neg 10911 This theorem is referenced by:  affineequiv4  25511  affineequivne  25512
 Copyright terms: Public domain W3C validator