![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > affineequiv3 | Structured version Visualization version GIF version |
Description: Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶. (Contributed by AV, 22-Jan-2023.) |
Ref | Expression |
---|---|
affineequiv.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
affineequiv.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
affineequiv.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
affineequiv.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
affineequiv3 | ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 11254 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
2 | affineequiv.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
3 | 1, 2 | subcld 11618 | . . . . 5 ⊢ (𝜑 → (1 − 𝐷) ∈ ℂ) |
4 | affineequiv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | 3, 4 | mulcld 11279 | . . . 4 ⊢ (𝜑 → ((1 − 𝐷) · 𝐵) ∈ ℂ) |
6 | affineequiv.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
7 | 2, 6 | mulcld 11279 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐶) ∈ ℂ) |
8 | 5, 7 | addcomd 11461 | . . 3 ⊢ (𝜑 → (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵))) |
9 | 8 | eqeq2d 2746 | . 2 ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)))) |
10 | affineequiv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
11 | 6, 10, 4, 2 | affineequiv 26881 | . 2 ⊢ (𝜑 → (𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)) ↔ (𝐵 − 𝐴) = (𝐷 · (𝐵 − 𝐶)))) |
12 | 10, 4 | negsubdi2d 11634 | . . . . 5 ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
13 | 12 | eqcomd 2741 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) = -(𝐴 − 𝐵)) |
14 | 13 | eqeq1d 2737 | . . 3 ⊢ (𝜑 → ((𝐵 − 𝐴) = (𝐷 · (𝐵 − 𝐶)) ↔ -(𝐴 − 𝐵) = (𝐷 · (𝐵 − 𝐶)))) |
15 | 6, 4 | negsubdi2d 11634 | . . . . . . 7 ⊢ (𝜑 → -(𝐶 − 𝐵) = (𝐵 − 𝐶)) |
16 | 15 | eqcomd 2741 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐶) = -(𝐶 − 𝐵)) |
17 | 16 | oveq2d 7447 | . . . . 5 ⊢ (𝜑 → (𝐷 · (𝐵 − 𝐶)) = (𝐷 · -(𝐶 − 𝐵))) |
18 | 6, 4 | subcld 11618 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 𝐵) ∈ ℂ) |
19 | 2, 18 | mulneg2d 11715 | . . . . 5 ⊢ (𝜑 → (𝐷 · -(𝐶 − 𝐵)) = -(𝐷 · (𝐶 − 𝐵))) |
20 | 17, 19 | eqtrd 2775 | . . . 4 ⊢ (𝜑 → (𝐷 · (𝐵 − 𝐶)) = -(𝐷 · (𝐶 − 𝐵))) |
21 | 20 | eqeq2d 2746 | . . 3 ⊢ (𝜑 → (-(𝐴 − 𝐵) = (𝐷 · (𝐵 − 𝐶)) ↔ -(𝐴 − 𝐵) = -(𝐷 · (𝐶 − 𝐵)))) |
22 | 10, 4 | subcld 11618 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
23 | 2, 18 | mulcld 11279 | . . . 4 ⊢ (𝜑 → (𝐷 · (𝐶 − 𝐵)) ∈ ℂ) |
24 | 22, 23 | neg11ad 11614 | . . 3 ⊢ (𝜑 → (-(𝐴 − 𝐵) = -(𝐷 · (𝐶 − 𝐵)) ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) |
25 | 14, 21, 24 | 3bitrd 305 | . 2 ⊢ (𝜑 → ((𝐵 − 𝐴) = (𝐷 · (𝐵 − 𝐶)) ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) |
26 | 9, 11, 25 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 1c1 11154 + caddc 11156 · cmul 11158 − cmin 11490 -cneg 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-neg 11493 |
This theorem is referenced by: affineequiv4 26884 affineequivne 26885 |
Copyright terms: Public domain | W3C validator |