MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv3 Structured version   Visualization version   GIF version

Theorem affineequiv3 26886
Description: Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv3 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))

Proof of Theorem affineequiv3
StepHypRef Expression
1 1cnd 11285 . . . . . 6 (𝜑 → 1 ∈ ℂ)
2 affineequiv.d . . . . . 6 (𝜑𝐷 ∈ ℂ)
31, 2subcld 11647 . . . . 5 (𝜑 → (1 − 𝐷) ∈ ℂ)
4 affineequiv.b . . . . 5 (𝜑𝐵 ∈ ℂ)
53, 4mulcld 11310 . . . 4 (𝜑 → ((1 − 𝐷) · 𝐵) ∈ ℂ)
6 affineequiv.c . . . . 5 (𝜑𝐶 ∈ ℂ)
72, 6mulcld 11310 . . . 4 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
85, 7addcomd 11492 . . 3 (𝜑 → (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)))
98eqeq2d 2751 . 2 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵))))
10 affineequiv.a . . 3 (𝜑𝐴 ∈ ℂ)
116, 10, 4, 2affineequiv 26884 . 2 (𝜑 → (𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)) ↔ (𝐵𝐴) = (𝐷 · (𝐵𝐶))))
1210, 4negsubdi2d 11663 . . . . 5 (𝜑 → -(𝐴𝐵) = (𝐵𝐴))
1312eqcomd 2746 . . . 4 (𝜑 → (𝐵𝐴) = -(𝐴𝐵))
1413eqeq1d 2742 . . 3 (𝜑 → ((𝐵𝐴) = (𝐷 · (𝐵𝐶)) ↔ -(𝐴𝐵) = (𝐷 · (𝐵𝐶))))
156, 4negsubdi2d 11663 . . . . . . 7 (𝜑 → -(𝐶𝐵) = (𝐵𝐶))
1615eqcomd 2746 . . . . . 6 (𝜑 → (𝐵𝐶) = -(𝐶𝐵))
1716oveq2d 7464 . . . . 5 (𝜑 → (𝐷 · (𝐵𝐶)) = (𝐷 · -(𝐶𝐵)))
186, 4subcld 11647 . . . . . 6 (𝜑 → (𝐶𝐵) ∈ ℂ)
192, 18mulneg2d 11744 . . . . 5 (𝜑 → (𝐷 · -(𝐶𝐵)) = -(𝐷 · (𝐶𝐵)))
2017, 19eqtrd 2780 . . . 4 (𝜑 → (𝐷 · (𝐵𝐶)) = -(𝐷 · (𝐶𝐵)))
2120eqeq2d 2751 . . 3 (𝜑 → (-(𝐴𝐵) = (𝐷 · (𝐵𝐶)) ↔ -(𝐴𝐵) = -(𝐷 · (𝐶𝐵))))
2210, 4subcld 11647 . . . 4 (𝜑 → (𝐴𝐵) ∈ ℂ)
232, 18mulcld 11310 . . . 4 (𝜑 → (𝐷 · (𝐶𝐵)) ∈ ℂ)
2422, 23neg11ad 11643 . . 3 (𝜑 → (-(𝐴𝐵) = -(𝐷 · (𝐶𝐵)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
2514, 21, 243bitrd 305 . 2 (𝜑 → ((𝐵𝐴) = (𝐷 · (𝐵𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
269, 11, 253bitrd 305 1 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-neg 11523
This theorem is referenced by:  affineequiv4  26887  affineequivne  26888
  Copyright terms: Public domain W3C validator