MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv3 Structured version   Visualization version   GIF version

Theorem affineequiv3 26733
Description: Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv3 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))

Proof of Theorem affineequiv3
StepHypRef Expression
1 1cnd 11110 . . . . . 6 (𝜑 → 1 ∈ ℂ)
2 affineequiv.d . . . . . 6 (𝜑𝐷 ∈ ℂ)
31, 2subcld 11475 . . . . 5 (𝜑 → (1 − 𝐷) ∈ ℂ)
4 affineequiv.b . . . . 5 (𝜑𝐵 ∈ ℂ)
53, 4mulcld 11135 . . . 4 (𝜑 → ((1 − 𝐷) · 𝐵) ∈ ℂ)
6 affineequiv.c . . . . 5 (𝜑𝐶 ∈ ℂ)
72, 6mulcld 11135 . . . 4 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
85, 7addcomd 11318 . . 3 (𝜑 → (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)))
98eqeq2d 2740 . 2 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵))))
10 affineequiv.a . . 3 (𝜑𝐴 ∈ ℂ)
116, 10, 4, 2affineequiv 26731 . 2 (𝜑 → (𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)) ↔ (𝐵𝐴) = (𝐷 · (𝐵𝐶))))
1210, 4negsubdi2d 11491 . . . . 5 (𝜑 → -(𝐴𝐵) = (𝐵𝐴))
1312eqcomd 2735 . . . 4 (𝜑 → (𝐵𝐴) = -(𝐴𝐵))
1413eqeq1d 2731 . . 3 (𝜑 → ((𝐵𝐴) = (𝐷 · (𝐵𝐶)) ↔ -(𝐴𝐵) = (𝐷 · (𝐵𝐶))))
156, 4negsubdi2d 11491 . . . . . . 7 (𝜑 → -(𝐶𝐵) = (𝐵𝐶))
1615eqcomd 2735 . . . . . 6 (𝜑 → (𝐵𝐶) = -(𝐶𝐵))
1716oveq2d 7365 . . . . 5 (𝜑 → (𝐷 · (𝐵𝐶)) = (𝐷 · -(𝐶𝐵)))
186, 4subcld 11475 . . . . . 6 (𝜑 → (𝐶𝐵) ∈ ℂ)
192, 18mulneg2d 11574 . . . . 5 (𝜑 → (𝐷 · -(𝐶𝐵)) = -(𝐷 · (𝐶𝐵)))
2017, 19eqtrd 2764 . . . 4 (𝜑 → (𝐷 · (𝐵𝐶)) = -(𝐷 · (𝐶𝐵)))
2120eqeq2d 2740 . . 3 (𝜑 → (-(𝐴𝐵) = (𝐷 · (𝐵𝐶)) ↔ -(𝐴𝐵) = -(𝐷 · (𝐶𝐵))))
2210, 4subcld 11475 . . . 4 (𝜑 → (𝐴𝐵) ∈ ℂ)
232, 18mulcld 11135 . . . 4 (𝜑 → (𝐷 · (𝐶𝐵)) ∈ ℂ)
2422, 23neg11ad 11471 . . 3 (𝜑 → (-(𝐴𝐵) = -(𝐷 · (𝐶𝐵)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
2514, 21, 243bitrd 305 . 2 (𝜑 → ((𝐵𝐴) = (𝐷 · (𝐵𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
269, 11, 253bitrd 305 1 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  (class class class)co 7349  cc 11007  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  -cneg 11348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-neg 11350
This theorem is referenced by:  affineequiv4  26734  affineequivne  26735
  Copyright terms: Public domain W3C validator