MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv3 Structured version   Visualization version   GIF version

Theorem affineequiv3 26762
Description: Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv3 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))

Proof of Theorem affineequiv3
StepHypRef Expression
1 1cnd 11107 . . . . . 6 (𝜑 → 1 ∈ ℂ)
2 affineequiv.d . . . . . 6 (𝜑𝐷 ∈ ℂ)
31, 2subcld 11472 . . . . 5 (𝜑 → (1 − 𝐷) ∈ ℂ)
4 affineequiv.b . . . . 5 (𝜑𝐵 ∈ ℂ)
53, 4mulcld 11132 . . . 4 (𝜑 → ((1 − 𝐷) · 𝐵) ∈ ℂ)
6 affineequiv.c . . . . 5 (𝜑𝐶 ∈ ℂ)
72, 6mulcld 11132 . . . 4 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
85, 7addcomd 11315 . . 3 (𝜑 → (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)))
98eqeq2d 2742 . 2 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵))))
10 affineequiv.a . . 3 (𝜑𝐴 ∈ ℂ)
116, 10, 4, 2affineequiv 26760 . 2 (𝜑 → (𝐴 = ((𝐷 · 𝐶) + ((1 − 𝐷) · 𝐵)) ↔ (𝐵𝐴) = (𝐷 · (𝐵𝐶))))
1210, 4negsubdi2d 11488 . . . . 5 (𝜑 → -(𝐴𝐵) = (𝐵𝐴))
1312eqcomd 2737 . . . 4 (𝜑 → (𝐵𝐴) = -(𝐴𝐵))
1413eqeq1d 2733 . . 3 (𝜑 → ((𝐵𝐴) = (𝐷 · (𝐵𝐶)) ↔ -(𝐴𝐵) = (𝐷 · (𝐵𝐶))))
156, 4negsubdi2d 11488 . . . . . . 7 (𝜑 → -(𝐶𝐵) = (𝐵𝐶))
1615eqcomd 2737 . . . . . 6 (𝜑 → (𝐵𝐶) = -(𝐶𝐵))
1716oveq2d 7362 . . . . 5 (𝜑 → (𝐷 · (𝐵𝐶)) = (𝐷 · -(𝐶𝐵)))
186, 4subcld 11472 . . . . . 6 (𝜑 → (𝐶𝐵) ∈ ℂ)
192, 18mulneg2d 11571 . . . . 5 (𝜑 → (𝐷 · -(𝐶𝐵)) = -(𝐷 · (𝐶𝐵)))
2017, 19eqtrd 2766 . . . 4 (𝜑 → (𝐷 · (𝐵𝐶)) = -(𝐷 · (𝐶𝐵)))
2120eqeq2d 2742 . . 3 (𝜑 → (-(𝐴𝐵) = (𝐷 · (𝐵𝐶)) ↔ -(𝐴𝐵) = -(𝐷 · (𝐶𝐵))))
2210, 4subcld 11472 . . . 4 (𝜑 → (𝐴𝐵) ∈ ℂ)
232, 18mulcld 11132 . . . 4 (𝜑 → (𝐷 · (𝐶𝐵)) ∈ ℂ)
2422, 23neg11ad 11468 . . 3 (𝜑 → (-(𝐴𝐵) = -(𝐷 · (𝐶𝐵)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
2514, 21, 243bitrd 305 . 2 (𝜑 → ((𝐵𝐴) = (𝐷 · (𝐵𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
269, 11, 253bitrd 305 1 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  -cneg 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347
This theorem is referenced by:  affineequiv4  26763  affineequivne  26764
  Copyright terms: Public domain W3C validator