MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv Structured version   Visualization version   GIF version

Theorem affineequiv 26867
Description: Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))

Proof of Theorem affineequiv
StepHypRef Expression
1 affineequiv.c . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
2 affineequiv.d . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
32, 1mulcld 11282 . . . . . . . 8 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
4 affineequiv.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
52, 4mulcld 11282 . . . . . . . 8 (𝜑 → (𝐷 · 𝐴) ∈ ℂ)
61, 3, 5subsubd 11649 . . . . . . 7 (𝜑 → (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))) = ((𝐶 − (𝐷 · 𝐶)) + (𝐷 · 𝐴)))
71, 3subcld 11621 . . . . . . . 8 (𝜑 → (𝐶 − (𝐷 · 𝐶)) ∈ ℂ)
87, 5addcomd 11464 . . . . . . 7 (𝜑 → ((𝐶 − (𝐷 · 𝐶)) + (𝐷 · 𝐴)) = ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))))
96, 8eqtr2d 2777 . . . . . 6 (𝜑 → ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
10 1cnd 11257 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
1110, 2, 1subdird 11721 . . . . . . . 8 (𝜑 → ((1 − 𝐷) · 𝐶) = ((1 · 𝐶) − (𝐷 · 𝐶)))
121mullidd 11280 . . . . . . . . 9 (𝜑 → (1 · 𝐶) = 𝐶)
1312oveq1d 7447 . . . . . . . 8 (𝜑 → ((1 · 𝐶) − (𝐷 · 𝐶)) = (𝐶 − (𝐷 · 𝐶)))
1411, 13eqtrd 2776 . . . . . . 7 (𝜑 → ((1 − 𝐷) · 𝐶) = (𝐶 − (𝐷 · 𝐶)))
1514oveq2d 7448 . . . . . 6 (𝜑 → ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) = ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))))
16 affineequiv.b . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
171, 16subcld 11621 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
181, 4subcld 11621 . . . . . . . . 9 (𝜑 → (𝐶𝐴) ∈ ℂ)
192, 18mulcld 11282 . . . . . . . 8 (𝜑 → (𝐷 · (𝐶𝐴)) ∈ ℂ)
2016, 17, 19addsubassd 11641 . . . . . . 7 (𝜑 → ((𝐵 + (𝐶𝐵)) − (𝐷 · (𝐶𝐴))) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
2116, 1pncan3d 11624 . . . . . . . 8 (𝜑 → (𝐵 + (𝐶𝐵)) = 𝐶)
222, 1, 4subdid 11720 . . . . . . . 8 (𝜑 → (𝐷 · (𝐶𝐴)) = ((𝐷 · 𝐶) − (𝐷 · 𝐴)))
2321, 22oveq12d 7450 . . . . . . 7 (𝜑 → ((𝐵 + (𝐶𝐵)) − (𝐷 · (𝐶𝐴))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
2420, 23eqtr3d 2778 . . . . . 6 (𝜑 → (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
259, 15, 243eqtr4d 2786 . . . . 5 (𝜑 → ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
2625eqeq2d 2747 . . . 4 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ 𝐵 = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴))))))
2716addridd 11462 . . . . 5 (𝜑 → (𝐵 + 0) = 𝐵)
2827eqeq1d 2738 . . . 4 (𝜑 → ((𝐵 + 0) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) ↔ 𝐵 = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴))))))
29 0cnd 11255 . . . . 5 (𝜑 → 0 ∈ ℂ)
3017, 19subcld 11621 . . . . 5 (𝜑 → ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) ∈ ℂ)
3116, 29, 30addcand 11465 . . . 4 (𝜑 → ((𝐵 + 0) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) ↔ 0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
3226, 28, 313bitr2d 307 . . 3 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ 0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
33 eqcom 2743 . . 3 (0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) ↔ ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0)
3432, 33bitrdi 287 . 2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0))
3517, 19subeq0ad 11631 . 2 (𝜑 → (((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0 ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
3634, 35bitrd 279 1 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  cmin 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-ltxr 11301  df-sub 11495
This theorem is referenced by:  affineequiv2  26868  affineequiv3  26869  angpieqvd  26875  chordthmlem2  26877  chordthmlem4  26879
  Copyright terms: Public domain W3C validator