MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv Structured version   Visualization version   GIF version

Theorem affineequiv 26018
Description: Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))

Proof of Theorem affineequiv
StepHypRef Expression
1 affineequiv.c . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
2 affineequiv.d . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
32, 1mulcld 11041 . . . . . . . 8 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
4 affineequiv.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
52, 4mulcld 11041 . . . . . . . 8 (𝜑 → (𝐷 · 𝐴) ∈ ℂ)
61, 3, 5subsubd 11406 . . . . . . 7 (𝜑 → (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))) = ((𝐶 − (𝐷 · 𝐶)) + (𝐷 · 𝐴)))
71, 3subcld 11378 . . . . . . . 8 (𝜑 → (𝐶 − (𝐷 · 𝐶)) ∈ ℂ)
87, 5addcomd 11223 . . . . . . 7 (𝜑 → ((𝐶 − (𝐷 · 𝐶)) + (𝐷 · 𝐴)) = ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))))
96, 8eqtr2d 2777 . . . . . 6 (𝜑 → ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
10 1cnd 11016 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
1110, 2, 1subdird 11478 . . . . . . . 8 (𝜑 → ((1 − 𝐷) · 𝐶) = ((1 · 𝐶) − (𝐷 · 𝐶)))
121mulid2d 11039 . . . . . . . . 9 (𝜑 → (1 · 𝐶) = 𝐶)
1312oveq1d 7322 . . . . . . . 8 (𝜑 → ((1 · 𝐶) − (𝐷 · 𝐶)) = (𝐶 − (𝐷 · 𝐶)))
1411, 13eqtrd 2776 . . . . . . 7 (𝜑 → ((1 − 𝐷) · 𝐶) = (𝐶 − (𝐷 · 𝐶)))
1514oveq2d 7323 . . . . . 6 (𝜑 → ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) = ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))))
16 affineequiv.b . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
171, 16subcld 11378 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
181, 4subcld 11378 . . . . . . . . 9 (𝜑 → (𝐶𝐴) ∈ ℂ)
192, 18mulcld 11041 . . . . . . . 8 (𝜑 → (𝐷 · (𝐶𝐴)) ∈ ℂ)
2016, 17, 19addsubassd 11398 . . . . . . 7 (𝜑 → ((𝐵 + (𝐶𝐵)) − (𝐷 · (𝐶𝐴))) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
2116, 1pncan3d 11381 . . . . . . . 8 (𝜑 → (𝐵 + (𝐶𝐵)) = 𝐶)
222, 1, 4subdid 11477 . . . . . . . 8 (𝜑 → (𝐷 · (𝐶𝐴)) = ((𝐷 · 𝐶) − (𝐷 · 𝐴)))
2321, 22oveq12d 7325 . . . . . . 7 (𝜑 → ((𝐵 + (𝐶𝐵)) − (𝐷 · (𝐶𝐴))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
2420, 23eqtr3d 2778 . . . . . 6 (𝜑 → (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
259, 15, 243eqtr4d 2786 . . . . 5 (𝜑 → ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
2625eqeq2d 2747 . . . 4 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ 𝐵 = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴))))))
2716addid1d 11221 . . . . 5 (𝜑 → (𝐵 + 0) = 𝐵)
2827eqeq1d 2738 . . . 4 (𝜑 → ((𝐵 + 0) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) ↔ 𝐵 = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴))))))
29 0cnd 11014 . . . . 5 (𝜑 → 0 ∈ ℂ)
3017, 19subcld 11378 . . . . 5 (𝜑 → ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) ∈ ℂ)
3116, 29, 30addcand 11224 . . . 4 (𝜑 → ((𝐵 + 0) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) ↔ 0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
3226, 28, 313bitr2d 307 . . 3 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ 0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
33 eqcom 2743 . . 3 (0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) ↔ ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0)
3432, 33bitrdi 287 . 2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0))
3517, 19subeq0ad 11388 . 2 (𝜑 → (((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0 ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
3634, 35bitrd 279 1 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2104  (class class class)co 7307  cc 10915  0cc0 10917  1c1 10918   + caddc 10920   · cmul 10922  cmin 11251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-ltxr 11060  df-sub 11253
This theorem is referenced by:  affineequiv2  26019  affineequiv3  26020  angpieqvd  26026  chordthmlem2  26028  chordthmlem4  26030
  Copyright terms: Public domain W3C validator