MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv Structured version   Visualization version   GIF version

Theorem affineequiv 25418
Description: Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
affineequiv (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))

Proof of Theorem affineequiv
StepHypRef Expression
1 affineequiv.c . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
2 affineequiv.d . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
32, 1mulcld 10661 . . . . . . . 8 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
4 affineequiv.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
52, 4mulcld 10661 . . . . . . . 8 (𝜑 → (𝐷 · 𝐴) ∈ ℂ)
61, 3, 5subsubd 11025 . . . . . . 7 (𝜑 → (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))) = ((𝐶 − (𝐷 · 𝐶)) + (𝐷 · 𝐴)))
71, 3subcld 10997 . . . . . . . 8 (𝜑 → (𝐶 − (𝐷 · 𝐶)) ∈ ℂ)
87, 5addcomd 10842 . . . . . . 7 (𝜑 → ((𝐶 − (𝐷 · 𝐶)) + (𝐷 · 𝐴)) = ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))))
96, 8eqtr2d 2860 . . . . . 6 (𝜑 → ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
10 1cnd 10636 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
1110, 2, 1subdird 11097 . . . . . . . 8 (𝜑 → ((1 − 𝐷) · 𝐶) = ((1 · 𝐶) − (𝐷 · 𝐶)))
121mulid2d 10659 . . . . . . . . 9 (𝜑 → (1 · 𝐶) = 𝐶)
1312oveq1d 7166 . . . . . . . 8 (𝜑 → ((1 · 𝐶) − (𝐷 · 𝐶)) = (𝐶 − (𝐷 · 𝐶)))
1411, 13eqtrd 2859 . . . . . . 7 (𝜑 → ((1 − 𝐷) · 𝐶) = (𝐶 − (𝐷 · 𝐶)))
1514oveq2d 7167 . . . . . 6 (𝜑 → ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) = ((𝐷 · 𝐴) + (𝐶 − (𝐷 · 𝐶))))
16 affineequiv.b . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
171, 16subcld 10997 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
181, 4subcld 10997 . . . . . . . . 9 (𝜑 → (𝐶𝐴) ∈ ℂ)
192, 18mulcld 10661 . . . . . . . 8 (𝜑 → (𝐷 · (𝐶𝐴)) ∈ ℂ)
2016, 17, 19addsubassd 11017 . . . . . . 7 (𝜑 → ((𝐵 + (𝐶𝐵)) − (𝐷 · (𝐶𝐴))) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
2116, 1pncan3d 11000 . . . . . . . 8 (𝜑 → (𝐵 + (𝐶𝐵)) = 𝐶)
222, 1, 4subdid 11096 . . . . . . . 8 (𝜑 → (𝐷 · (𝐶𝐴)) = ((𝐷 · 𝐶) − (𝐷 · 𝐴)))
2321, 22oveq12d 7169 . . . . . . 7 (𝜑 → ((𝐵 + (𝐶𝐵)) − (𝐷 · (𝐶𝐴))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
2420, 23eqtr3d 2861 . . . . . 6 (𝜑 → (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) = (𝐶 − ((𝐷 · 𝐶) − (𝐷 · 𝐴))))
259, 15, 243eqtr4d 2869 . . . . 5 (𝜑 → ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
2625eqeq2d 2835 . . . 4 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ 𝐵 = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴))))))
2716addid1d 10840 . . . . 5 (𝜑 → (𝐵 + 0) = 𝐵)
2827eqeq1d 2826 . . . 4 (𝜑 → ((𝐵 + 0) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) ↔ 𝐵 = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴))))))
29 0cnd 10634 . . . . 5 (𝜑 → 0 ∈ ℂ)
3017, 19subcld 10997 . . . . 5 (𝜑 → ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) ∈ ℂ)
3116, 29, 30addcand 10843 . . . 4 (𝜑 → ((𝐵 + 0) = (𝐵 + ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))) ↔ 0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
3226, 28, 313bitr2d 310 . . 3 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ 0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴)))))
33 eqcom 2831 . . 3 (0 = ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) ↔ ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0)
3432, 33syl6bb 290 . 2 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ ((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0))
3517, 19subeq0ad 11007 . 2 (𝜑 → (((𝐶𝐵) − (𝐷 · (𝐶𝐴))) = 0 ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
3634, 35bitrd 282 1 (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶𝐵) = (𝐷 · (𝐶𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2115  (class class class)co 7151  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-sub 10872
This theorem is referenced by:  affineequiv2  25419  affineequiv3  25420  angpieqvd  25426  chordthmlem2  25428  chordthmlem4  25430
  Copyright terms: Public domain W3C validator