![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > affineid | Structured version Visualization version GIF version |
Description: Identity of an affine combination. (Contributed by AV, 2-Feb-2023.) |
Ref | Expression |
---|---|
affineid.f | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
affineid.x | ⊢ (𝜑 → 𝑇 ∈ ℂ) |
Ref | Expression |
---|---|
affineid | ⊢ (𝜑 → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 10358 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
2 | affineid.x | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℂ) | |
3 | affineid.f | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
4 | 1, 2, 3 | subdird 10818 | . . . 4 ⊢ (𝜑 → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴))) |
5 | 3 | mulid2d 10382 | . . . . 5 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
6 | 5 | oveq1d 6925 | . . . 4 ⊢ (𝜑 → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴))) |
7 | 4, 6 | eqtrd 2861 | . . 3 ⊢ (𝜑 → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴))) |
8 | 7 | oveq1d 6925 | . 2 ⊢ (𝜑 → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐴)) = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐴))) |
9 | 2, 3 | mulcld 10384 | . . 3 ⊢ (𝜑 → (𝑇 · 𝐴) ∈ ℂ) |
10 | 3, 9 | npcand 10724 | . 2 ⊢ (𝜑 → ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐴)) = 𝐴) |
11 | 8, 10 | eqtrd 2861 | 1 ⊢ (𝜑 → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 (class class class)co 6910 ℂcc 10257 1c1 10260 + caddc 10262 · cmul 10264 − cmin 10592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-po 5265 df-so 5266 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-ltxr 10403 df-sub 10594 |
This theorem is referenced by: rrx2vlinest 43305 |
Copyright terms: Public domain | W3C validator |