![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > affineid | Structured version Visualization version GIF version |
Description: Identity of an affine combination. (Contributed by AV, 2-Feb-2023.) |
Ref | Expression |
---|---|
affineid.f | โข (๐ โ ๐ด โ โ) |
affineid.x | โข (๐ โ ๐ โ โ) |
Ref | Expression |
---|---|
affineid | โข (๐ โ (((1 โ ๐) ยท ๐ด) + (๐ ยท ๐ด)) = ๐ด) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 11208 | . . . . 5 โข (๐ โ 1 โ โ) | |
2 | affineid.x | . . . . 5 โข (๐ โ ๐ โ โ) | |
3 | affineid.f | . . . . 5 โข (๐ โ ๐ด โ โ) | |
4 | 1, 2, 3 | subdird 11670 | . . . 4 โข (๐ โ ((1 โ ๐) ยท ๐ด) = ((1 ยท ๐ด) โ (๐ ยท ๐ด))) |
5 | 3 | mullidd 11231 | . . . . 5 โข (๐ โ (1 ยท ๐ด) = ๐ด) |
6 | 5 | oveq1d 7423 | . . . 4 โข (๐ โ ((1 ยท ๐ด) โ (๐ ยท ๐ด)) = (๐ด โ (๐ ยท ๐ด))) |
7 | 4, 6 | eqtrd 2772 | . . 3 โข (๐ โ ((1 โ ๐) ยท ๐ด) = (๐ด โ (๐ ยท ๐ด))) |
8 | 7 | oveq1d 7423 | . 2 โข (๐ โ (((1 โ ๐) ยท ๐ด) + (๐ ยท ๐ด)) = ((๐ด โ (๐ ยท ๐ด)) + (๐ ยท ๐ด))) |
9 | 2, 3 | mulcld 11233 | . . 3 โข (๐ โ (๐ ยท ๐ด) โ โ) |
10 | 3, 9 | npcand 11574 | . 2 โข (๐ โ ((๐ด โ (๐ ยท ๐ด)) + (๐ ยท ๐ด)) = ๐ด) |
11 | 8, 10 | eqtrd 2772 | 1 โข (๐ โ (((1 โ ๐) ยท ๐ด) + (๐ ยท ๐ด)) = ๐ด) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 (class class class)co 7408 โcc 11107 1c1 11110 + caddc 11112 ยท cmul 11114 โ cmin 11443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 |
This theorem is referenced by: rrx2vlinest 47417 |
Copyright terms: Public domain | W3C validator |