![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > affineid | Structured version Visualization version GIF version |
Description: Identity of an affine combination. (Contributed by AV, 2-Feb-2023.) |
Ref | Expression |
---|---|
affineid.f | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
affineid.x | ⊢ (𝜑 → 𝑇 ∈ ℂ) |
Ref | Expression |
---|---|
affineid | ⊢ (𝜑 → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 11253 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
2 | affineid.x | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℂ) | |
3 | affineid.f | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
4 | 1, 2, 3 | subdird 11717 | . . . 4 ⊢ (𝜑 → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴))) |
5 | 3 | mullidd 11276 | . . . . 5 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
6 | 5 | oveq1d 7445 | . . . 4 ⊢ (𝜑 → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴))) |
7 | 4, 6 | eqtrd 2774 | . . 3 ⊢ (𝜑 → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴))) |
8 | 7 | oveq1d 7445 | . 2 ⊢ (𝜑 → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐴)) = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐴))) |
9 | 2, 3 | mulcld 11278 | . . 3 ⊢ (𝜑 → (𝑇 · 𝐴) ∈ ℂ) |
10 | 3, 9 | npcand 11621 | . 2 ⊢ (𝜑 → ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐴)) = 𝐴) |
11 | 8, 10 | eqtrd 2774 | 1 ⊢ (𝜑 → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 1c1 11153 + caddc 11155 · cmul 11157 − cmin 11489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 df-sub 11491 |
This theorem is referenced by: rrx2vlinest 48590 |
Copyright terms: Public domain | W3C validator |