Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  affinecomb2 Structured version   Visualization version   GIF version

Theorem affinecomb2 43449
Description: Combination of two real affine combinations, presented without fraction. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affinecomb1.a (𝜑𝐴 ∈ ℝ)
affinecomb1.b (𝜑𝐵 ∈ ℝ)
affinecomb1.c (𝜑𝐶 ∈ ℝ)
affinecomb1.d (𝜑𝐵𝐶)
affinecomb1.e (𝜑𝐸 ∈ ℝ)
affinecomb1.f (𝜑𝐹 ∈ ℝ)
affinecomb1.g (𝜑𝐺 ∈ ℝ)
Assertion
Ref Expression
affinecomb2 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐶   𝑡,𝐸   𝑡,𝐹   𝜑,𝑡   𝑡,𝐺

Proof of Theorem affinecomb2
StepHypRef Expression
1 affinecomb1.a . . 3 (𝜑𝐴 ∈ ℝ)
2 affinecomb1.b . . 3 (𝜑𝐵 ∈ ℝ)
3 affinecomb1.c . . 3 (𝜑𝐶 ∈ ℝ)
4 affinecomb1.d . . 3 (𝜑𝐵𝐶)
5 affinecomb1.e . . 3 (𝜑𝐸 ∈ ℝ)
6 affinecomb1.f . . 3 (𝜑𝐹 ∈ ℝ)
7 affinecomb1.g . . 3 (𝜑𝐺 ∈ ℝ)
8 eqid 2778 . . 3 ((𝐺𝐹) / (𝐶𝐵)) = ((𝐺𝐹) / (𝐶𝐵))
91, 2, 3, 4, 5, 6, 7, 8affinecomb1 43448 . 2 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ 𝐸 = ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)))
105recnd 10407 . . 3 (𝜑𝐸 ∈ ℂ)
117recnd 10407 . . . . . . 7 (𝜑𝐺 ∈ ℂ)
126recnd 10407 . . . . . . 7 (𝜑𝐹 ∈ ℂ)
1311, 12subcld 10736 . . . . . 6 (𝜑 → (𝐺𝐹) ∈ ℂ)
143recnd 10407 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
152recnd 10407 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1614, 15subcld 10736 . . . . . 6 (𝜑 → (𝐶𝐵) ∈ ℂ)
174necomd 3024 . . . . . . 7 (𝜑𝐶𝐵)
1814, 15, 17subne0d 10745 . . . . . 6 (𝜑 → (𝐶𝐵) ≠ 0)
1913, 16, 18divcld 11153 . . . . 5 (𝜑 → ((𝐺𝐹) / (𝐶𝐵)) ∈ ℂ)
201recnd 10407 . . . . . 6 (𝜑𝐴 ∈ ℂ)
2120, 15subcld 10736 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
2219, 21mulcld 10399 . . . 4 (𝜑 → (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) ∈ ℂ)
2322, 12addcld 10398 . . 3 (𝜑 → ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹) ∈ ℂ)
2410, 23, 16, 18mulcand 11010 . 2 (𝜑 → (((𝐶𝐵) · 𝐸) = ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) ↔ 𝐸 = ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)))
2516, 22, 12adddid 10403 . . . 4 (𝜑 → ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) = (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)))
2613, 16, 18divcan2d 11155 . . . . . . . 8 (𝜑 → ((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) = (𝐺𝐹))
2726oveq1d 6939 . . . . . . 7 (𝜑 → (((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) · (𝐴𝐵)) = ((𝐺𝐹) · (𝐴𝐵)))
2816, 19, 21mulassd 10402 . . . . . . 7 (𝜑 → (((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) · (𝐴𝐵)) = ((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))))
2913, 20, 15subdid 10833 . . . . . . 7 (𝜑 → ((𝐺𝐹) · (𝐴𝐵)) = (((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)))
3027, 28, 293eqtr3d 2822 . . . . . 6 (𝜑 → ((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) = (((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)))
3114, 15, 12subdird 10834 . . . . . 6 (𝜑 → ((𝐶𝐵) · 𝐹) = ((𝐶 · 𝐹) − (𝐵 · 𝐹)))
3230, 31oveq12d 6942 . . . . 5 (𝜑 → (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)) = ((((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)) + ((𝐶 · 𝐹) − (𝐵 · 𝐹))))
3313, 20mulcld 10399 . . . . . 6 (𝜑 → ((𝐺𝐹) · 𝐴) ∈ ℂ)
3413, 15mulcld 10399 . . . . . 6 (𝜑 → ((𝐺𝐹) · 𝐵) ∈ ℂ)
3514, 12mulcld 10399 . . . . . . 7 (𝜑 → (𝐶 · 𝐹) ∈ ℂ)
3615, 12mulcld 10399 . . . . . . 7 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
3735, 36subcld 10736 . . . . . 6 (𝜑 → ((𝐶 · 𝐹) − (𝐵 · 𝐹)) ∈ ℂ)
3833, 34, 37subadd23d 10758 . . . . 5 (𝜑 → ((((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)) + ((𝐶 · 𝐹) − (𝐵 · 𝐹))) = (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))))
3932, 38eqtrd 2814 . . . 4 (𝜑 → (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)) = (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))))
4014, 12mulcomd 10400 . . . . . . . 8 (𝜑 → (𝐶 · 𝐹) = (𝐹 · 𝐶))
4115, 12mulcomd 10400 . . . . . . . 8 (𝜑 → (𝐵 · 𝐹) = (𝐹 · 𝐵))
4240, 41oveq12d 6942 . . . . . . 7 (𝜑 → ((𝐶 · 𝐹) − (𝐵 · 𝐹)) = ((𝐹 · 𝐶) − (𝐹 · 𝐵)))
4311, 12, 15subdird 10834 . . . . . . 7 (𝜑 → ((𝐺𝐹) · 𝐵) = ((𝐺 · 𝐵) − (𝐹 · 𝐵)))
4442, 43oveq12d 6942 . . . . . 6 (𝜑 → (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵)) = (((𝐹 · 𝐶) − (𝐹 · 𝐵)) − ((𝐺 · 𝐵) − (𝐹 · 𝐵))))
4512, 14mulcld 10399 . . . . . . 7 (𝜑 → (𝐹 · 𝐶) ∈ ℂ)
4611, 15mulcld 10399 . . . . . . 7 (𝜑 → (𝐺 · 𝐵) ∈ ℂ)
4712, 15mulcld 10399 . . . . . . 7 (𝜑 → (𝐹 · 𝐵) ∈ ℂ)
4845, 46, 47nnncan2d 10771 . . . . . 6 (𝜑 → (((𝐹 · 𝐶) − (𝐹 · 𝐵)) − ((𝐺 · 𝐵) − (𝐹 · 𝐵))) = ((𝐹 · 𝐶) − (𝐺 · 𝐵)))
4911, 15mulcomd 10400 . . . . . . 7 (𝜑 → (𝐺 · 𝐵) = (𝐵 · 𝐺))
5049oveq2d 6940 . . . . . 6 (𝜑 → ((𝐹 · 𝐶) − (𝐺 · 𝐵)) = ((𝐹 · 𝐶) − (𝐵 · 𝐺)))
5144, 48, 503eqtrd 2818 . . . . 5 (𝜑 → (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵)) = ((𝐹 · 𝐶) − (𝐵 · 𝐺)))
5251oveq2d 6940 . . . 4 (𝜑 → (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺))))
5325, 39, 523eqtrd 2818 . . 3 (𝜑 → ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺))))
5453eqeq2d 2788 . 2 (𝜑 → (((𝐶𝐵) · 𝐸) = ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
559, 24, 543bitr2d 299 1 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  wrex 3091  (class class class)co 6924  cr 10273  1c1 10275   + caddc 10277   · cmul 10279  cmin 10608   / cdiv 11034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035
This theorem is referenced by:  rrx2linest  43488
  Copyright terms: Public domain W3C validator