Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  affinecomb2 Structured version   Visualization version   GIF version

Theorem affinecomb2 48698
Description: Combination of two real affine combinations, presented without fraction. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affinecomb1.a (𝜑𝐴 ∈ ℝ)
affinecomb1.b (𝜑𝐵 ∈ ℝ)
affinecomb1.c (𝜑𝐶 ∈ ℝ)
affinecomb1.d (𝜑𝐵𝐶)
affinecomb1.e (𝜑𝐸 ∈ ℝ)
affinecomb1.f (𝜑𝐹 ∈ ℝ)
affinecomb1.g (𝜑𝐺 ∈ ℝ)
Assertion
Ref Expression
affinecomb2 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐶   𝑡,𝐸   𝑡,𝐹   𝜑,𝑡   𝑡,𝐺

Proof of Theorem affinecomb2
StepHypRef Expression
1 affinecomb1.a . . 3 (𝜑𝐴 ∈ ℝ)
2 affinecomb1.b . . 3 (𝜑𝐵 ∈ ℝ)
3 affinecomb1.c . . 3 (𝜑𝐶 ∈ ℝ)
4 affinecomb1.d . . 3 (𝜑𝐵𝐶)
5 affinecomb1.e . . 3 (𝜑𝐸 ∈ ℝ)
6 affinecomb1.f . . 3 (𝜑𝐹 ∈ ℝ)
7 affinecomb1.g . . 3 (𝜑𝐺 ∈ ℝ)
8 eqid 2729 . . 3 ((𝐺𝐹) / (𝐶𝐵)) = ((𝐺𝐹) / (𝐶𝐵))
91, 2, 3, 4, 5, 6, 7, 8affinecomb1 48697 . 2 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ 𝐸 = ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)))
105recnd 11143 . . 3 (𝜑𝐸 ∈ ℂ)
117recnd 11143 . . . . . . 7 (𝜑𝐺 ∈ ℂ)
126recnd 11143 . . . . . . 7 (𝜑𝐹 ∈ ℂ)
1311, 12subcld 11475 . . . . . 6 (𝜑 → (𝐺𝐹) ∈ ℂ)
143recnd 11143 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
152recnd 11143 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1614, 15subcld 11475 . . . . . 6 (𝜑 → (𝐶𝐵) ∈ ℂ)
174necomd 2980 . . . . . . 7 (𝜑𝐶𝐵)
1814, 15, 17subne0d 11484 . . . . . 6 (𝜑 → (𝐶𝐵) ≠ 0)
1913, 16, 18divcld 11900 . . . . 5 (𝜑 → ((𝐺𝐹) / (𝐶𝐵)) ∈ ℂ)
201recnd 11143 . . . . . 6 (𝜑𝐴 ∈ ℂ)
2120, 15subcld 11475 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
2219, 21mulcld 11135 . . . 4 (𝜑 → (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) ∈ ℂ)
2322, 12addcld 11134 . . 3 (𝜑 → ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹) ∈ ℂ)
2410, 23, 16, 18mulcand 11753 . 2 (𝜑 → (((𝐶𝐵) · 𝐸) = ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) ↔ 𝐸 = ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)))
2516, 22, 12adddid 11139 . . . 4 (𝜑 → ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) = (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)))
2613, 16, 18divcan2d 11902 . . . . . . . 8 (𝜑 → ((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) = (𝐺𝐹))
2726oveq1d 7364 . . . . . . 7 (𝜑 → (((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) · (𝐴𝐵)) = ((𝐺𝐹) · (𝐴𝐵)))
2816, 19, 21mulassd 11138 . . . . . . 7 (𝜑 → (((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) · (𝐴𝐵)) = ((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))))
2913, 20, 15subdid 11576 . . . . . . 7 (𝜑 → ((𝐺𝐹) · (𝐴𝐵)) = (((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)))
3027, 28, 293eqtr3d 2772 . . . . . 6 (𝜑 → ((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) = (((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)))
3114, 15, 12subdird 11577 . . . . . 6 (𝜑 → ((𝐶𝐵) · 𝐹) = ((𝐶 · 𝐹) − (𝐵 · 𝐹)))
3230, 31oveq12d 7367 . . . . 5 (𝜑 → (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)) = ((((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)) + ((𝐶 · 𝐹) − (𝐵 · 𝐹))))
3313, 20mulcld 11135 . . . . . 6 (𝜑 → ((𝐺𝐹) · 𝐴) ∈ ℂ)
3413, 15mulcld 11135 . . . . . 6 (𝜑 → ((𝐺𝐹) · 𝐵) ∈ ℂ)
3514, 12mulcld 11135 . . . . . . 7 (𝜑 → (𝐶 · 𝐹) ∈ ℂ)
3615, 12mulcld 11135 . . . . . . 7 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
3735, 36subcld 11475 . . . . . 6 (𝜑 → ((𝐶 · 𝐹) − (𝐵 · 𝐹)) ∈ ℂ)
3833, 34, 37subadd23d 11497 . . . . 5 (𝜑 → ((((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)) + ((𝐶 · 𝐹) − (𝐵 · 𝐹))) = (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))))
3932, 38eqtrd 2764 . . . 4 (𝜑 → (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)) = (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))))
4014, 12mulcomd 11136 . . . . . . . 8 (𝜑 → (𝐶 · 𝐹) = (𝐹 · 𝐶))
4115, 12mulcomd 11136 . . . . . . . 8 (𝜑 → (𝐵 · 𝐹) = (𝐹 · 𝐵))
4240, 41oveq12d 7367 . . . . . . 7 (𝜑 → ((𝐶 · 𝐹) − (𝐵 · 𝐹)) = ((𝐹 · 𝐶) − (𝐹 · 𝐵)))
4311, 12, 15subdird 11577 . . . . . . 7 (𝜑 → ((𝐺𝐹) · 𝐵) = ((𝐺 · 𝐵) − (𝐹 · 𝐵)))
4442, 43oveq12d 7367 . . . . . 6 (𝜑 → (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵)) = (((𝐹 · 𝐶) − (𝐹 · 𝐵)) − ((𝐺 · 𝐵) − (𝐹 · 𝐵))))
4512, 14mulcld 11135 . . . . . . 7 (𝜑 → (𝐹 · 𝐶) ∈ ℂ)
4611, 15mulcld 11135 . . . . . . 7 (𝜑 → (𝐺 · 𝐵) ∈ ℂ)
4712, 15mulcld 11135 . . . . . . 7 (𝜑 → (𝐹 · 𝐵) ∈ ℂ)
4845, 46, 47nnncan2d 11510 . . . . . 6 (𝜑 → (((𝐹 · 𝐶) − (𝐹 · 𝐵)) − ((𝐺 · 𝐵) − (𝐹 · 𝐵))) = ((𝐹 · 𝐶) − (𝐺 · 𝐵)))
4911, 15mulcomd 11136 . . . . . . 7 (𝜑 → (𝐺 · 𝐵) = (𝐵 · 𝐺))
5049oveq2d 7365 . . . . . 6 (𝜑 → ((𝐹 · 𝐶) − (𝐺 · 𝐵)) = ((𝐹 · 𝐶) − (𝐵 · 𝐺)))
5144, 48, 503eqtrd 2768 . . . . 5 (𝜑 → (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵)) = ((𝐹 · 𝐶) − (𝐵 · 𝐺)))
5251oveq2d 7365 . . . 4 (𝜑 → (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺))))
5325, 39, 523eqtrd 2768 . . 3 (𝜑 → ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺))))
5453eqeq2d 2740 . 2 (𝜑 → (((𝐶𝐵) · 𝐸) = ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
559, 24, 543bitr2d 307 1 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  (class class class)co 7349  cr 11008  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347   / cdiv 11777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778
This theorem is referenced by:  rrx2linest  48737
  Copyright terms: Public domain W3C validator