Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  affinecomb2 Structured version   Visualization version   GIF version

Theorem affinecomb2 46027
Description: Combination of two real affine combinations, presented without fraction. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affinecomb1.a (𝜑𝐴 ∈ ℝ)
affinecomb1.b (𝜑𝐵 ∈ ℝ)
affinecomb1.c (𝜑𝐶 ∈ ℝ)
affinecomb1.d (𝜑𝐵𝐶)
affinecomb1.e (𝜑𝐸 ∈ ℝ)
affinecomb1.f (𝜑𝐹 ∈ ℝ)
affinecomb1.g (𝜑𝐺 ∈ ℝ)
Assertion
Ref Expression
affinecomb2 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐶   𝑡,𝐸   𝑡,𝐹   𝜑,𝑡   𝑡,𝐺

Proof of Theorem affinecomb2
StepHypRef Expression
1 affinecomb1.a . . 3 (𝜑𝐴 ∈ ℝ)
2 affinecomb1.b . . 3 (𝜑𝐵 ∈ ℝ)
3 affinecomb1.c . . 3 (𝜑𝐶 ∈ ℝ)
4 affinecomb1.d . . 3 (𝜑𝐵𝐶)
5 affinecomb1.e . . 3 (𝜑𝐸 ∈ ℝ)
6 affinecomb1.f . . 3 (𝜑𝐹 ∈ ℝ)
7 affinecomb1.g . . 3 (𝜑𝐺 ∈ ℝ)
8 eqid 2738 . . 3 ((𝐺𝐹) / (𝐶𝐵)) = ((𝐺𝐹) / (𝐶𝐵))
91, 2, 3, 4, 5, 6, 7, 8affinecomb1 46026 . 2 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ 𝐸 = ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)))
105recnd 11013 . . 3 (𝜑𝐸 ∈ ℂ)
117recnd 11013 . . . . . . 7 (𝜑𝐺 ∈ ℂ)
126recnd 11013 . . . . . . 7 (𝜑𝐹 ∈ ℂ)
1311, 12subcld 11342 . . . . . 6 (𝜑 → (𝐺𝐹) ∈ ℂ)
143recnd 11013 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
152recnd 11013 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1614, 15subcld 11342 . . . . . 6 (𝜑 → (𝐶𝐵) ∈ ℂ)
174necomd 2999 . . . . . . 7 (𝜑𝐶𝐵)
1814, 15, 17subne0d 11351 . . . . . 6 (𝜑 → (𝐶𝐵) ≠ 0)
1913, 16, 18divcld 11761 . . . . 5 (𝜑 → ((𝐺𝐹) / (𝐶𝐵)) ∈ ℂ)
201recnd 11013 . . . . . 6 (𝜑𝐴 ∈ ℂ)
2120, 15subcld 11342 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
2219, 21mulcld 11005 . . . 4 (𝜑 → (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) ∈ ℂ)
2322, 12addcld 11004 . . 3 (𝜑 → ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹) ∈ ℂ)
2410, 23, 16, 18mulcand 11618 . 2 (𝜑 → (((𝐶𝐵) · 𝐸) = ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) ↔ 𝐸 = ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)))
2516, 22, 12adddid 11009 . . . 4 (𝜑 → ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) = (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)))
2613, 16, 18divcan2d 11763 . . . . . . . 8 (𝜑 → ((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) = (𝐺𝐹))
2726oveq1d 7282 . . . . . . 7 (𝜑 → (((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) · (𝐴𝐵)) = ((𝐺𝐹) · (𝐴𝐵)))
2816, 19, 21mulassd 11008 . . . . . . 7 (𝜑 → (((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) · (𝐴𝐵)) = ((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))))
2913, 20, 15subdid 11441 . . . . . . 7 (𝜑 → ((𝐺𝐹) · (𝐴𝐵)) = (((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)))
3027, 28, 293eqtr3d 2786 . . . . . 6 (𝜑 → ((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) = (((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)))
3114, 15, 12subdird 11442 . . . . . 6 (𝜑 → ((𝐶𝐵) · 𝐹) = ((𝐶 · 𝐹) − (𝐵 · 𝐹)))
3230, 31oveq12d 7285 . . . . 5 (𝜑 → (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)) = ((((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)) + ((𝐶 · 𝐹) − (𝐵 · 𝐹))))
3313, 20mulcld 11005 . . . . . 6 (𝜑 → ((𝐺𝐹) · 𝐴) ∈ ℂ)
3413, 15mulcld 11005 . . . . . 6 (𝜑 → ((𝐺𝐹) · 𝐵) ∈ ℂ)
3514, 12mulcld 11005 . . . . . . 7 (𝜑 → (𝐶 · 𝐹) ∈ ℂ)
3615, 12mulcld 11005 . . . . . . 7 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
3735, 36subcld 11342 . . . . . 6 (𝜑 → ((𝐶 · 𝐹) − (𝐵 · 𝐹)) ∈ ℂ)
3833, 34, 37subadd23d 11364 . . . . 5 (𝜑 → ((((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)) + ((𝐶 · 𝐹) − (𝐵 · 𝐹))) = (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))))
3932, 38eqtrd 2778 . . . 4 (𝜑 → (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)) = (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))))
4014, 12mulcomd 11006 . . . . . . . 8 (𝜑 → (𝐶 · 𝐹) = (𝐹 · 𝐶))
4115, 12mulcomd 11006 . . . . . . . 8 (𝜑 → (𝐵 · 𝐹) = (𝐹 · 𝐵))
4240, 41oveq12d 7285 . . . . . . 7 (𝜑 → ((𝐶 · 𝐹) − (𝐵 · 𝐹)) = ((𝐹 · 𝐶) − (𝐹 · 𝐵)))
4311, 12, 15subdird 11442 . . . . . . 7 (𝜑 → ((𝐺𝐹) · 𝐵) = ((𝐺 · 𝐵) − (𝐹 · 𝐵)))
4442, 43oveq12d 7285 . . . . . 6 (𝜑 → (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵)) = (((𝐹 · 𝐶) − (𝐹 · 𝐵)) − ((𝐺 · 𝐵) − (𝐹 · 𝐵))))
4512, 14mulcld 11005 . . . . . . 7 (𝜑 → (𝐹 · 𝐶) ∈ ℂ)
4611, 15mulcld 11005 . . . . . . 7 (𝜑 → (𝐺 · 𝐵) ∈ ℂ)
4712, 15mulcld 11005 . . . . . . 7 (𝜑 → (𝐹 · 𝐵) ∈ ℂ)
4845, 46, 47nnncan2d 11377 . . . . . 6 (𝜑 → (((𝐹 · 𝐶) − (𝐹 · 𝐵)) − ((𝐺 · 𝐵) − (𝐹 · 𝐵))) = ((𝐹 · 𝐶) − (𝐺 · 𝐵)))
4911, 15mulcomd 11006 . . . . . . 7 (𝜑 → (𝐺 · 𝐵) = (𝐵 · 𝐺))
5049oveq2d 7283 . . . . . 6 (𝜑 → ((𝐹 · 𝐶) − (𝐺 · 𝐵)) = ((𝐹 · 𝐶) − (𝐵 · 𝐺)))
5144, 48, 503eqtrd 2782 . . . . 5 (𝜑 → (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵)) = ((𝐹 · 𝐶) − (𝐵 · 𝐺)))
5251oveq2d 7283 . . . 4 (𝜑 → (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺))))
5325, 39, 523eqtrd 2782 . . 3 (𝜑 → ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺))))
5453eqeq2d 2749 . 2 (𝜑 → (((𝐶𝐵) · 𝐸) = ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
559, 24, 543bitr2d 307 1 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  (class class class)co 7267  cr 10880  1c1 10882   + caddc 10884   · cmul 10886  cmin 11215   / cdiv 11642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-po 5498  df-so 5499  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643
This theorem is referenced by:  rrx2linest  46066
  Copyright terms: Public domain W3C validator