Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  affinecomb2 Structured version   Visualization version   GIF version

Theorem affinecomb2 48437
Description: Combination of two real affine combinations, presented without fraction. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affinecomb1.a (𝜑𝐴 ∈ ℝ)
affinecomb1.b (𝜑𝐵 ∈ ℝ)
affinecomb1.c (𝜑𝐶 ∈ ℝ)
affinecomb1.d (𝜑𝐵𝐶)
affinecomb1.e (𝜑𝐸 ∈ ℝ)
affinecomb1.f (𝜑𝐹 ∈ ℝ)
affinecomb1.g (𝜑𝐺 ∈ ℝ)
Assertion
Ref Expression
affinecomb2 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐶   𝑡,𝐸   𝑡,𝐹   𝜑,𝑡   𝑡,𝐺

Proof of Theorem affinecomb2
StepHypRef Expression
1 affinecomb1.a . . 3 (𝜑𝐴 ∈ ℝ)
2 affinecomb1.b . . 3 (𝜑𝐵 ∈ ℝ)
3 affinecomb1.c . . 3 (𝜑𝐶 ∈ ℝ)
4 affinecomb1.d . . 3 (𝜑𝐵𝐶)
5 affinecomb1.e . . 3 (𝜑𝐸 ∈ ℝ)
6 affinecomb1.f . . 3 (𝜑𝐹 ∈ ℝ)
7 affinecomb1.g . . 3 (𝜑𝐺 ∈ ℝ)
8 eqid 2740 . . 3 ((𝐺𝐹) / (𝐶𝐵)) = ((𝐺𝐹) / (𝐶𝐵))
91, 2, 3, 4, 5, 6, 7, 8affinecomb1 48436 . 2 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ 𝐸 = ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)))
105recnd 11318 . . 3 (𝜑𝐸 ∈ ℂ)
117recnd 11318 . . . . . . 7 (𝜑𝐺 ∈ ℂ)
126recnd 11318 . . . . . . 7 (𝜑𝐹 ∈ ℂ)
1311, 12subcld 11647 . . . . . 6 (𝜑 → (𝐺𝐹) ∈ ℂ)
143recnd 11318 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
152recnd 11318 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1614, 15subcld 11647 . . . . . 6 (𝜑 → (𝐶𝐵) ∈ ℂ)
174necomd 3002 . . . . . . 7 (𝜑𝐶𝐵)
1814, 15, 17subne0d 11656 . . . . . 6 (𝜑 → (𝐶𝐵) ≠ 0)
1913, 16, 18divcld 12070 . . . . 5 (𝜑 → ((𝐺𝐹) / (𝐶𝐵)) ∈ ℂ)
201recnd 11318 . . . . . 6 (𝜑𝐴 ∈ ℂ)
2120, 15subcld 11647 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
2219, 21mulcld 11310 . . . 4 (𝜑 → (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) ∈ ℂ)
2322, 12addcld 11309 . . 3 (𝜑 → ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹) ∈ ℂ)
2410, 23, 16, 18mulcand 11923 . 2 (𝜑 → (((𝐶𝐵) · 𝐸) = ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) ↔ 𝐸 = ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)))
2516, 22, 12adddid 11314 . . . 4 (𝜑 → ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) = (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)))
2613, 16, 18divcan2d 12072 . . . . . . . 8 (𝜑 → ((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) = (𝐺𝐹))
2726oveq1d 7463 . . . . . . 7 (𝜑 → (((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) · (𝐴𝐵)) = ((𝐺𝐹) · (𝐴𝐵)))
2816, 19, 21mulassd 11313 . . . . . . 7 (𝜑 → (((𝐶𝐵) · ((𝐺𝐹) / (𝐶𝐵))) · (𝐴𝐵)) = ((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))))
2913, 20, 15subdid 11746 . . . . . . 7 (𝜑 → ((𝐺𝐹) · (𝐴𝐵)) = (((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)))
3027, 28, 293eqtr3d 2788 . . . . . 6 (𝜑 → ((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) = (((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)))
3114, 15, 12subdird 11747 . . . . . 6 (𝜑 → ((𝐶𝐵) · 𝐹) = ((𝐶 · 𝐹) − (𝐵 · 𝐹)))
3230, 31oveq12d 7466 . . . . 5 (𝜑 → (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)) = ((((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)) + ((𝐶 · 𝐹) − (𝐵 · 𝐹))))
3313, 20mulcld 11310 . . . . . 6 (𝜑 → ((𝐺𝐹) · 𝐴) ∈ ℂ)
3413, 15mulcld 11310 . . . . . 6 (𝜑 → ((𝐺𝐹) · 𝐵) ∈ ℂ)
3514, 12mulcld 11310 . . . . . . 7 (𝜑 → (𝐶 · 𝐹) ∈ ℂ)
3615, 12mulcld 11310 . . . . . . 7 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
3735, 36subcld 11647 . . . . . 6 (𝜑 → ((𝐶 · 𝐹) − (𝐵 · 𝐹)) ∈ ℂ)
3833, 34, 37subadd23d 11669 . . . . 5 (𝜑 → ((((𝐺𝐹) · 𝐴) − ((𝐺𝐹) · 𝐵)) + ((𝐶 · 𝐹) − (𝐵 · 𝐹))) = (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))))
3932, 38eqtrd 2780 . . . 4 (𝜑 → (((𝐶𝐵) · (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))) + ((𝐶𝐵) · 𝐹)) = (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))))
4014, 12mulcomd 11311 . . . . . . . 8 (𝜑 → (𝐶 · 𝐹) = (𝐹 · 𝐶))
4115, 12mulcomd 11311 . . . . . . . 8 (𝜑 → (𝐵 · 𝐹) = (𝐹 · 𝐵))
4240, 41oveq12d 7466 . . . . . . 7 (𝜑 → ((𝐶 · 𝐹) − (𝐵 · 𝐹)) = ((𝐹 · 𝐶) − (𝐹 · 𝐵)))
4311, 12, 15subdird 11747 . . . . . . 7 (𝜑 → ((𝐺𝐹) · 𝐵) = ((𝐺 · 𝐵) − (𝐹 · 𝐵)))
4442, 43oveq12d 7466 . . . . . 6 (𝜑 → (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵)) = (((𝐹 · 𝐶) − (𝐹 · 𝐵)) − ((𝐺 · 𝐵) − (𝐹 · 𝐵))))
4512, 14mulcld 11310 . . . . . . 7 (𝜑 → (𝐹 · 𝐶) ∈ ℂ)
4611, 15mulcld 11310 . . . . . . 7 (𝜑 → (𝐺 · 𝐵) ∈ ℂ)
4712, 15mulcld 11310 . . . . . . 7 (𝜑 → (𝐹 · 𝐵) ∈ ℂ)
4845, 46, 47nnncan2d 11682 . . . . . 6 (𝜑 → (((𝐹 · 𝐶) − (𝐹 · 𝐵)) − ((𝐺 · 𝐵) − (𝐹 · 𝐵))) = ((𝐹 · 𝐶) − (𝐺 · 𝐵)))
4911, 15mulcomd 11311 . . . . . . 7 (𝜑 → (𝐺 · 𝐵) = (𝐵 · 𝐺))
5049oveq2d 7464 . . . . . 6 (𝜑 → ((𝐹 · 𝐶) − (𝐺 · 𝐵)) = ((𝐹 · 𝐶) − (𝐵 · 𝐺)))
5144, 48, 503eqtrd 2784 . . . . 5 (𝜑 → (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵)) = ((𝐹 · 𝐶) − (𝐵 · 𝐺)))
5251oveq2d 7464 . . . 4 (𝜑 → (((𝐺𝐹) · 𝐴) + (((𝐶 · 𝐹) − (𝐵 · 𝐹)) − ((𝐺𝐹) · 𝐵))) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺))))
5325, 39, 523eqtrd 2784 . . 3 (𝜑 → ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺))))
5453eqeq2d 2751 . 2 (𝜑 → (((𝐶𝐵) · 𝐸) = ((𝐶𝐵) · ((((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)) + 𝐹)) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
559, 24, 543bitr2d 307 1 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ ((𝐶𝐵) · 𝐸) = (((𝐺𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  (class class class)co 7448  cr 11183  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520   / cdiv 11947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948
This theorem is referenced by:  rrx2linest  48476
  Copyright terms: Public domain W3C validator