Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 (class class class)co 7409
ℂcc 11108 + caddc 11113 − cmin 11444 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 |
This theorem is referenced by: addlsub
11630 npcan1
11639 ltsubadd
11684 lesubadd
11686 lesub1
11708 lincmb01cmp
13472 expaddzlem
14071 bcpasc
14281 bcn2m1
14284 cshwidxmod
14753 repswcshw
14762 swrds2m
14892 shftuz
15016 o1dif
15574 arisum2
15807 ntrivcvg
15843 ntrivcvgtail
15846 prodrblem
15873 fprodser
15893 fprodm1
15911 risefacval2
15954 fallfacval2
15955 fallfacfwd
15980 binomfallfaclem2
15984 sin01bnd
16128 moddvds
16208 dvdsexp
16271 bitscmp
16379 hashdvds
16708 vdwlem5
16918 vdwlem6
16919 vdwlem8
16921 srgbinomlem4
20052 uniioombllem3
25102 i1faddlem
25210 itg1addlem4
25216 itg1addlem4OLD
25217 dvcnp2
25437 ftc1lem4
25556 dgrcolem2
25788 plydivlem4
25809 aaliou3lem8
25858 dvtaylp
25882 dvntaylp0
25884 taylthlem1
25885 efif1olem4
26054 tanarg
26127 quart1
26361 dmgmaddnn0
26531 lgamgulm2
26540 gamfac
26571 basellem9
26593 chtublem
26714 logexprlim
26728 dchrptlem1
26767 lgsquadlem1
26883 mudivsum
27033 logsqvma
27045 log2sumbnd
27047 selberglem2
27049 pntrlog2bndlem5
27084 pntlem3
27112 ostth2lem2
27137 brbtwn2
28163 cusgrsize2inds
28710 clwlkclwwlklem2
29253 clwwisshclwws
29268 clwwlkel
29299 clwwlkf
29300 clwwlknonex2lem1
29360 2clwwlk2clwwlk
29603 numclwwlk2
29634 fzspl
32001 fzsplit3
32005 bcm1n
32006 wrdt2ind
32117 swrdrn3
32119 omndmul3
32231 psgnfzto1stlem
32259 cycpmco2lem5
32289 cycpmco2lem6
32290 freshmansdream
32381 ballotlemfc0
33491 ballotlemfcc
33492 signstfvn
33580 reprsuc
33627 breprexplemc
33644 lpadlen2
33693 revwlk
34115 bcm1nt
34707 gg-dvcnp2
35174 itg2addnclem
36539 ftc1cnnclem
36559 ftc1anc
36569 caushft
36629 fzsplitnd
40848 lcmfunnnd
40877 lcmineqlem4
40897 lcmineqlem23
40916 intlewftc
40926 dvle2
40937 sticksstones10
40971 sticksstones12a
40973 sticksstones16
40978 metakunt8
40992 nicomachus
41210 fltnltalem
41404 pellexlem6
41572 rmspecfund
41647 rmyluc
41676 jm2.18
41727 jm2.25
41738 hbtlem4
41868 bccm1k
43101 binomcxplemwb
43107 binomcxplemnotnn0
43115 oddfl
43987 zltlesub
43995 fzisoeu
44010 fperiodmul
44014 fzdifsuc2
44020 iccshift
44231 iooshift
44235 fmul01lt1lem2
44301 limcperiod
44344 sumnnodd
44346 cncfperiod
44595 fperdvper
44635 dvbdfbdioolem2
44645 dvnmul
44659 itgsinexp
44671 itgperiod
44697 stoweidlem11
44727 stoweidlem14
44730 stoweidlem26
44742 stoweidlem34
44750 wallispilem5
44785 stirlinglem5
44794 stirlinglem11
44800 stirlinglem12
44801 dirkercncflem1
44819 fourierdlem11
44834 fourierdlem15
44838 fourierdlem26
44849 fourierdlem41
44864 fourierdlem42
44865 fourierdlem48
44870 fourierdlem49
44871 fourierdlem63
44885 fourierdlem64
44886 fourierdlem65
44887 fourierdlem74
44896 fourierdlem75
44897 fourierdlem79
44901 fourierdlem81
44903 fourierdlem84
44906 fourierdlem88
44910 fourierdlem90
44912 fourierdlem92
44914 fourierdlem95
44917 fourierdlem97
44919 fourierdlem103
44925 fourierdlem104
44926 fourierdlem109
44931 fourierdlem111
44933 fourierswlem
44946 fouriersw
44947 elaa2lem
44949 etransclem23
44973 etransclem24
44974 etransclem28
44978 etransclem38
44988 smfmullem1
45507 fargshiftfo
46110 lighneallem3
46275 nnsum4primeseven
46468 nnsum4primesevenALTV
46469 bgoldbtbndlem4
46476 bgoldbtbnd
46477 m1modmmod
47207 dignn0flhalflem1
47301 affineid
47390 eenglngeehlnmlem1
47423 itsclquadb
47462 |