Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 (class class class)co 7409
ℂcc 11108 + caddc 11113 − cmin 11444 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 |
This theorem is referenced by: addlsub
11630 npcan1
11639 ltsubadd
11684 lesubadd
11686 lesub1
11708 lincmb01cmp
13472 expaddzlem
14071 bcpasc
14281 bcn2m1
14284 cshwidxmod
14753 repswcshw
14762 swrds2m
14892 shftuz
15016 o1dif
15574 arisum2
15807 ntrivcvg
15843 ntrivcvgtail
15846 prodrblem
15873 fprodser
15893 fprodm1
15911 risefacval2
15954 fallfacval2
15955 fallfacfwd
15980 binomfallfaclem2
15984 sin01bnd
16128 moddvds
16208 dvdsexp
16271 bitscmp
16379 hashdvds
16708 vdwlem5
16918 vdwlem6
16919 vdwlem8
16921 srgbinomlem4
20052 uniioombllem3
25102 i1faddlem
25210 itg1addlem4
25216 itg1addlem4OLD
25217 dvcnp2
25437 ftc1lem4
25556 dgrcolem2
25788 plydivlem4
25809 aaliou3lem8
25858 dvtaylp
25882 dvntaylp0
25884 taylthlem1
25885 efif1olem4
26054 tanarg
26127 quart1
26361 dmgmaddnn0
26531 lgamgulm2
26540 gamfac
26571 basellem9
26593 chtublem
26714 logexprlim
26728 dchrptlem1
26767 lgsquadlem1
26883 mudivsum
27033 logsqvma
27045 log2sumbnd
27047 selberglem2
27049 pntrlog2bndlem5
27084 pntlem3
27112 ostth2lem2
27137 brbtwn2
28194 cusgrsize2inds
28741 clwlkclwwlklem2
29284 clwwisshclwws
29299 clwwlkel
29330 clwwlkf
29331 clwwlknonex2lem1
29391 2clwwlk2clwwlk
29634 numclwwlk2
29665 fzspl
32032 fzsplit3
32036 bcm1n
32037 wrdt2ind
32148 swrdrn3
32150 omndmul3
32262 psgnfzto1stlem
32290 cycpmco2lem5
32320 cycpmco2lem6
32321 freshmansdream
32412 ballotlemfc0
33522 ballotlemfcc
33523 signstfvn
33611 reprsuc
33658 breprexplemc
33675 lpadlen2
33724 revwlk
34146 bcm1nt
34738 gg-dvcnp2
35205 itg2addnclem
36587 ftc1cnnclem
36607 ftc1anc
36617 caushft
36677 fzsplitnd
40896 lcmfunnnd
40925 lcmineqlem4
40945 lcmineqlem23
40964 intlewftc
40974 dvle2
40985 sticksstones10
41019 sticksstones12a
41021 sticksstones16
41026 metakunt8
41040 nicomachus
41258 fltnltalem
41452 pellexlem6
41620 rmspecfund
41695 rmyluc
41724 jm2.18
41775 jm2.25
41786 hbtlem4
41916 bccm1k
43149 binomcxplemwb
43155 binomcxplemnotnn0
43163 oddfl
44035 zltlesub
44043 fzisoeu
44058 fperiodmul
44062 fzdifsuc2
44068 iccshift
44279 iooshift
44283 fmul01lt1lem2
44349 limcperiod
44392 sumnnodd
44394 cncfperiod
44643 fperdvper
44683 dvbdfbdioolem2
44693 dvnmul
44707 itgsinexp
44719 itgperiod
44745 stoweidlem11
44775 stoweidlem14
44778 stoweidlem26
44790 stoweidlem34
44798 wallispilem5
44833 stirlinglem5
44842 stirlinglem11
44848 stirlinglem12
44849 dirkercncflem1
44867 fourierdlem11
44882 fourierdlem15
44886 fourierdlem26
44897 fourierdlem41
44912 fourierdlem42
44913 fourierdlem48
44918 fourierdlem49
44919 fourierdlem63
44933 fourierdlem64
44934 fourierdlem65
44935 fourierdlem74
44944 fourierdlem75
44945 fourierdlem79
44949 fourierdlem81
44951 fourierdlem84
44954 fourierdlem88
44958 fourierdlem90
44960 fourierdlem92
44962 fourierdlem95
44965 fourierdlem97
44967 fourierdlem103
44973 fourierdlem104
44974 fourierdlem109
44979 fourierdlem111
44981 fourierswlem
44994 fouriersw
44995 elaa2lem
44997 etransclem23
45021 etransclem24
45022 etransclem28
45026 etransclem38
45036 smfmullem1
45555 fargshiftfo
46158 lighneallem3
46323 nnsum4primeseven
46516 nnsum4primesevenALTV
46517 bgoldbtbndlem4
46524 bgoldbtbnd
46525 m1modmmod
47255 dignn0flhalflem1
47349 affineid
47438 eenglngeehlnmlem1
47471 itsclquadb
47510 |