Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1subrec1sub Structured version   Visualization version   GIF version

Theorem 1subrec1sub 48555
Description: Subtract the reciprocal of 1 minus a number from 1 results in the number divided by the number minus 1. (Contributed by AV, 15-Feb-2023.)
Assertion
Ref Expression
1subrec1sub ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (𝐴 / (𝐴 − 1)))

Proof of Theorem 1subrec1sub
StepHypRef Expression
1 1cnd 11254 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 ∈ ℂ)
2 simpl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
31, 2subcld 11618 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
4 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
54necomd 2994 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
61, 2, 5subne0d 11627 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
71, 3, 6divcan4d 12047 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) / (1 − 𝐴)) = 1)
87eqcomd 2741 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 = ((1 · (1 − 𝐴)) / (1 − 𝐴)))
98oveq1d 7446 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (((1 · (1 − 𝐴)) / (1 − 𝐴)) − (1 / (1 − 𝐴))))
101, 3mulcld 11279 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 · (1 − 𝐴)) ∈ ℂ)
1110, 1, 3, 6divsubdird 12080 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (((1 · (1 − 𝐴)) / (1 − 𝐴)) − (1 / (1 − 𝐴))))
123mullidd 11277 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 · (1 − 𝐴)) = (1 − 𝐴))
1312oveq1d 7446 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) − 1) = ((1 − 𝐴) − 1))
14 negcl 11506 . . . . . . 7 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
1514adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -𝐴 ∈ ℂ)
161, 2negsubd 11624 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 + -𝐴) = (1 − 𝐴))
1716eqcomd 2741 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) = (1 + -𝐴))
181, 15, 17mvrladdd 11674 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 − 𝐴) − 1) = -𝐴)
1913, 18eqtrd 2775 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) − 1) = -𝐴)
2019oveq1d 7446 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (-𝐴 / (1 − 𝐴)))
212, 3, 6divneg2d 12055 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(𝐴 / (1 − 𝐴)) = (𝐴 / -(1 − 𝐴)))
222, 3, 6divnegd 12054 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(𝐴 / (1 − 𝐴)) = (-𝐴 / (1 − 𝐴)))
231, 2negsubdi2d 11634 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(1 − 𝐴) = (𝐴 − 1))
2423oveq2d 7447 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (𝐴 / -(1 − 𝐴)) = (𝐴 / (𝐴 − 1)))
2521, 22, 243eqtr3d 2783 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (-𝐴 / (1 − 𝐴)) = (𝐴 / (𝐴 − 1)))
2620, 25eqtrd 2775 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (𝐴 / (𝐴 − 1)))
279, 11, 263eqtr2d 2781 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (𝐴 / (𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  (class class class)co 7431  cc 11151  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491   / cdiv 11918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919
This theorem is referenced by:  eenglngeehlnmlem2  48588
  Copyright terms: Public domain W3C validator