![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1subrec1sub | Structured version Visualization version GIF version |
Description: Subtract the reciprocal of 1 minus a number from 1 results in the number divided by the number minus 1. (Contributed by AV, 15-Feb-2023.) |
Ref | Expression |
---|---|
1subrec1sub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (𝐴 / (𝐴 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 11205 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 ∈ ℂ) | |
2 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ) | |
3 | 1, 2 | subcld 11567 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ) |
4 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1) | |
5 | 4 | necomd 2988 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴) |
6 | 1, 2, 5 | subne0d 11576 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0) |
7 | 1, 3, 6 | divcan4d 11992 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) / (1 − 𝐴)) = 1) |
8 | 7 | eqcomd 2730 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 = ((1 · (1 − 𝐴)) / (1 − 𝐴))) |
9 | 8 | oveq1d 7416 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (((1 · (1 − 𝐴)) / (1 − 𝐴)) − (1 / (1 − 𝐴)))) |
10 | 1, 3 | mulcld 11230 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 · (1 − 𝐴)) ∈ ℂ) |
11 | 10, 1, 3, 6 | divsubdird 12025 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (((1 · (1 − 𝐴)) / (1 − 𝐴)) − (1 / (1 − 𝐴)))) |
12 | 3 | mullidd 11228 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 · (1 − 𝐴)) = (1 − 𝐴)) |
13 | 12 | oveq1d 7416 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) − 1) = ((1 − 𝐴) − 1)) |
14 | negcl 11456 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -𝐴 ∈ ℂ) |
16 | 1, 2 | negsubd 11573 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 + -𝐴) = (1 − 𝐴)) |
17 | 16 | eqcomd 2730 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) = (1 + -𝐴)) |
18 | 1, 15, 17 | mvrladdd 11623 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 − 𝐴) − 1) = -𝐴) |
19 | 13, 18 | eqtrd 2764 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) − 1) = -𝐴) |
20 | 19 | oveq1d 7416 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (-𝐴 / (1 − 𝐴))) |
21 | 2, 3, 6 | divneg2d 12000 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(𝐴 / (1 − 𝐴)) = (𝐴 / -(1 − 𝐴))) |
22 | 2, 3, 6 | divnegd 11999 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(𝐴 / (1 − 𝐴)) = (-𝐴 / (1 − 𝐴))) |
23 | 1, 2 | negsubdi2d 11583 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(1 − 𝐴) = (𝐴 − 1)) |
24 | 23 | oveq2d 7417 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (𝐴 / -(1 − 𝐴)) = (𝐴 / (𝐴 − 1))) |
25 | 21, 22, 24 | 3eqtr3d 2772 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (-𝐴 / (1 − 𝐴)) = (𝐴 / (𝐴 − 1))) |
26 | 20, 25 | eqtrd 2764 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (𝐴 / (𝐴 − 1))) |
27 | 9, 11, 26 | 3eqtr2d 2770 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (𝐴 / (𝐴 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 (class class class)co 7401 ℂcc 11103 1c1 11106 + caddc 11108 · cmul 11110 − cmin 11440 -cneg 11441 / cdiv 11867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 |
This theorem is referenced by: eenglngeehlnmlem2 47578 |
Copyright terms: Public domain | W3C validator |