![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1subrec1sub | Structured version Visualization version GIF version |
Description: Subtract the reciprocal of 1 minus a number from 1 results in the number divided by the number minus 1. (Contributed by AV, 15-Feb-2023.) |
Ref | Expression |
---|---|
1subrec1sub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (𝐴 / (𝐴 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 11285 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 ∈ ℂ) | |
2 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ) | |
3 | 1, 2 | subcld 11647 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ) |
4 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1) | |
5 | 4 | necomd 3002 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴) |
6 | 1, 2, 5 | subne0d 11656 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0) |
7 | 1, 3, 6 | divcan4d 12076 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) / (1 − 𝐴)) = 1) |
8 | 7 | eqcomd 2746 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 = ((1 · (1 − 𝐴)) / (1 − 𝐴))) |
9 | 8 | oveq1d 7463 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (((1 · (1 − 𝐴)) / (1 − 𝐴)) − (1 / (1 − 𝐴)))) |
10 | 1, 3 | mulcld 11310 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 · (1 − 𝐴)) ∈ ℂ) |
11 | 10, 1, 3, 6 | divsubdird 12109 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (((1 · (1 − 𝐴)) / (1 − 𝐴)) − (1 / (1 − 𝐴)))) |
12 | 3 | mullidd 11308 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 · (1 − 𝐴)) = (1 − 𝐴)) |
13 | 12 | oveq1d 7463 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) − 1) = ((1 − 𝐴) − 1)) |
14 | negcl 11536 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -𝐴 ∈ ℂ) |
16 | 1, 2 | negsubd 11653 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 + -𝐴) = (1 − 𝐴)) |
17 | 16 | eqcomd 2746 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) = (1 + -𝐴)) |
18 | 1, 15, 17 | mvrladdd 11703 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 − 𝐴) − 1) = -𝐴) |
19 | 13, 18 | eqtrd 2780 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) − 1) = -𝐴) |
20 | 19 | oveq1d 7463 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (-𝐴 / (1 − 𝐴))) |
21 | 2, 3, 6 | divneg2d 12084 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(𝐴 / (1 − 𝐴)) = (𝐴 / -(1 − 𝐴))) |
22 | 2, 3, 6 | divnegd 12083 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(𝐴 / (1 − 𝐴)) = (-𝐴 / (1 − 𝐴))) |
23 | 1, 2 | negsubdi2d 11663 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(1 − 𝐴) = (𝐴 − 1)) |
24 | 23 | oveq2d 7464 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (𝐴 / -(1 − 𝐴)) = (𝐴 / (𝐴 − 1))) |
25 | 21, 22, 24 | 3eqtr3d 2788 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (-𝐴 / (1 − 𝐴)) = (𝐴 / (𝐴 − 1))) |
26 | 20, 25 | eqtrd 2780 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (𝐴 / (𝐴 − 1))) |
27 | 9, 11, 26 | 3eqtr2d 2786 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (𝐴 / (𝐴 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 -cneg 11521 / cdiv 11947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 |
This theorem is referenced by: eenglngeehlnmlem2 48472 |
Copyright terms: Public domain | W3C validator |