Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1subrec1sub | Structured version Visualization version GIF version |
Description: Subtract the reciprocal of 1 minus a number from 1 results in the number divided by the number minus 1. (Contributed by AV, 15-Feb-2023.) |
Ref | Expression |
---|---|
1subrec1sub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (𝐴 / (𝐴 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 10726 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 ∈ ℂ) | |
2 | simpl 486 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ) | |
3 | 1, 2 | subcld 11087 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ) |
4 | simpr 488 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1) | |
5 | 4 | necomd 2990 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴) |
6 | 1, 2, 5 | subne0d 11096 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0) |
7 | 1, 3, 6 | divcan4d 11512 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) / (1 − 𝐴)) = 1) |
8 | 7 | eqcomd 2745 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 = ((1 · (1 − 𝐴)) / (1 − 𝐴))) |
9 | 8 | oveq1d 7197 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (((1 · (1 − 𝐴)) / (1 − 𝐴)) − (1 / (1 − 𝐴)))) |
10 | 1, 3 | mulcld 10751 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 · (1 − 𝐴)) ∈ ℂ) |
11 | 10, 1, 3, 6 | divsubdird 11545 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (((1 · (1 − 𝐴)) / (1 − 𝐴)) − (1 / (1 − 𝐴)))) |
12 | 3 | mulid2d 10749 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 · (1 − 𝐴)) = (1 − 𝐴)) |
13 | 12 | oveq1d 7197 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) − 1) = ((1 − 𝐴) − 1)) |
14 | negcl 10976 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
15 | 14 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -𝐴 ∈ ℂ) |
16 | 1, 2 | negsubd 11093 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 + -𝐴) = (1 − 𝐴)) |
17 | 16 | eqcomd 2745 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) = (1 + -𝐴)) |
18 | 1, 15, 17 | mvrladdd 11143 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 − 𝐴) − 1) = -𝐴) |
19 | 13, 18 | eqtrd 2774 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) − 1) = -𝐴) |
20 | 19 | oveq1d 7197 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (-𝐴 / (1 − 𝐴))) |
21 | 2, 3, 6 | divneg2d 11520 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(𝐴 / (1 − 𝐴)) = (𝐴 / -(1 − 𝐴))) |
22 | 2, 3, 6 | divnegd 11519 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(𝐴 / (1 − 𝐴)) = (-𝐴 / (1 − 𝐴))) |
23 | 1, 2 | negsubdi2d 11103 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(1 − 𝐴) = (𝐴 − 1)) |
24 | 23 | oveq2d 7198 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (𝐴 / -(1 − 𝐴)) = (𝐴 / (𝐴 − 1))) |
25 | 21, 22, 24 | 3eqtr3d 2782 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (-𝐴 / (1 − 𝐴)) = (𝐴 / (𝐴 − 1))) |
26 | 20, 25 | eqtrd 2774 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (𝐴 / (𝐴 − 1))) |
27 | 9, 11, 26 | 3eqtr2d 2780 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (𝐴 / (𝐴 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 (class class class)co 7182 ℂcc 10625 1c1 10628 + caddc 10630 · cmul 10632 − cmin 10960 -cneg 10961 / cdiv 11387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-po 5452 df-so 5453 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-div 11388 |
This theorem is referenced by: eenglngeehlnmlem2 45665 |
Copyright terms: Public domain | W3C validator |