![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1subrec1sub | Structured version Visualization version GIF version |
Description: Subtract the reciprocal of 1 minus a number from 1 results in the number divided by the number minus 1. (Contributed by AV, 15-Feb-2023.) |
Ref | Expression |
---|---|
1subrec1sub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (𝐴 / (𝐴 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 10358 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 ∈ ℂ) | |
2 | simpl 476 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ) | |
3 | 1, 2 | subcld 10720 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ) |
4 | simpr 479 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1) | |
5 | 4 | necomd 3054 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴) |
6 | 1, 2, 5 | subne0d 10729 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0) |
7 | 1, 3, 6 | divcan4d 11140 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) / (1 − 𝐴)) = 1) |
8 | 7 | eqcomd 2831 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → 1 = ((1 · (1 − 𝐴)) / (1 − 𝐴))) |
9 | 8 | oveq1d 6925 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (((1 · (1 − 𝐴)) / (1 − 𝐴)) − (1 / (1 − 𝐴)))) |
10 | 1, 3 | mulcld 10384 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 · (1 − 𝐴)) ∈ ℂ) |
11 | 10, 1, 3, 6 | divsubdird 11173 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (((1 · (1 − 𝐴)) / (1 − 𝐴)) − (1 / (1 − 𝐴)))) |
12 | 3 | mulid2d 10382 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 · (1 − 𝐴)) = (1 − 𝐴)) |
13 | 12 | oveq1d 6925 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) − 1) = ((1 − 𝐴) − 1)) |
14 | negcl 10608 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
15 | 14 | adantr 474 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -𝐴 ∈ ℂ) |
16 | 1, 2 | negsubd 10726 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 + -𝐴) = (1 − 𝐴)) |
17 | 16 | eqcomd 2831 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − 𝐴) = (1 + -𝐴)) |
18 | 1, 15, 17 | mvrladdd 10774 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 − 𝐴) − 1) = -𝐴) |
19 | 13, 18 | eqtrd 2861 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → ((1 · (1 − 𝐴)) − 1) = -𝐴) |
20 | 19 | oveq1d 6925 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (-𝐴 / (1 − 𝐴))) |
21 | 2, 3, 6 | divneg2d 11148 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(𝐴 / (1 − 𝐴)) = (𝐴 / -(1 − 𝐴))) |
22 | 2, 3, 6 | divnegd 11147 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(𝐴 / (1 − 𝐴)) = (-𝐴 / (1 − 𝐴))) |
23 | 1, 2 | negsubdi2d 10736 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → -(1 − 𝐴) = (𝐴 − 1)) |
24 | 23 | oveq2d 6926 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (𝐴 / -(1 − 𝐴)) = (𝐴 / (𝐴 − 1))) |
25 | 21, 22, 24 | 3eqtr3d 2869 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (-𝐴 / (1 − 𝐴)) = (𝐴 / (𝐴 − 1))) |
26 | 20, 25 | eqtrd 2861 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (((1 · (1 − 𝐴)) − 1) / (1 − 𝐴)) = (𝐴 / (𝐴 − 1))) |
27 | 9, 11, 26 | 3eqtr2d 2867 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (𝐴 / (𝐴 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 (class class class)co 6910 ℂcc 10257 1c1 10260 + caddc 10262 · cmul 10264 − cmin 10592 -cneg 10593 / cdiv 11016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-po 5265 df-so 5266 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 |
This theorem is referenced by: eenglngeehlnmlem2 43306 |
Copyright terms: Public domain | W3C validator |