Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rvecrr Structured version   Visualization version   GIF version

Theorem bj-rvecrr 35238
Description: The field of scalars of a real vector space is the field of real numbers. (Contributed by BJ, 6-Jan-2024.)
Assertion
Ref Expression
bj-rvecrr (𝑉 ∈ ℝ-Vec → (Scalar‘𝑉) = ℝfld)

Proof of Theorem bj-rvecrr
StepHypRef Expression
1 bj-isrvec 35235 . 2 (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld))
21simprbi 500 1 (𝑉 ∈ ℝ-Vec → (Scalar‘𝑉) = ℝfld)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  cfv 6400  Scalarcsca 16837  LModclmod 19931  fldcrefld 20598  ℝ-Veccrrvec 35233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10814  ax-1cn 10816  ax-addcl 10818
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-ov 7237  df-om 7666  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-nn 11860  df-2 11922  df-3 11923  df-4 11924  df-5 11925  df-slot 16767  df-ndx 16777  df-sca 16850  df-bj-rvec 35234
This theorem is referenced by:  bj-rvecvec  35240  bj-isrvec2  35241  bj-rveccmod  35243
  Copyright terms: Public domain W3C validator