Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rvecrr Structured version   Visualization version   GIF version

Theorem bj-rvecrr 37352
Description: The field of scalars of a real vector space is the field of real numbers. (Contributed by BJ, 6-Jan-2024.)
Assertion
Ref Expression
bj-rvecrr (𝑉 ∈ ℝ-Vec → (Scalar‘𝑉) = ℝfld)

Proof of Theorem bj-rvecrr
StepHypRef Expression
1 bj-isrvec 37349 . 2 (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld))
21simprbi 496 1 (𝑉 ∈ ℝ-Vec → (Scalar‘𝑉) = ℝfld)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6489  Scalarcsca 17174  LModclmod 20803  fldcrefld 21551  ℝ-Veccrrvec 37347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-1cn 11074  ax-addcl 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-slot 17103  df-ndx 17115  df-sca 17187  df-bj-rvec 37348
This theorem is referenced by:  bj-rvecvec  37354  bj-isrvec2  37355  bj-rveccmod  37357
  Copyright terms: Public domain W3C validator