Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rvecrr Structured version   Visualization version   GIF version

Theorem bj-rvecrr 36685
Description: The field of scalars of a real vector space is the field of real numbers. (Contributed by BJ, 6-Jan-2024.)
Assertion
Ref Expression
bj-rvecrr (𝑉 ∈ ℝ-Vec β†’ (Scalarβ€˜π‘‰) = ℝfld)

Proof of Theorem bj-rvecrr
StepHypRef Expression
1 bj-isrvec 36682 . 2 (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalarβ€˜π‘‰) = ℝfld))
21simprbi 496 1 (𝑉 ∈ ℝ-Vec β†’ (Scalarβ€˜π‘‰) = ℝfld)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  β€˜cfv 6537  Scalarcsca 17209  LModclmod 20706  β„fldcrefld 21497  β„-Veccrrvec 36680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-1cn 11170  ax-addcl 11172
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-slot 17124  df-ndx 17136  df-sca 17222  df-bj-rvec 36681
This theorem is referenced by:  bj-rvecvec  36687  bj-isrvec2  36688  bj-rveccmod  36690
  Copyright terms: Public domain W3C validator