Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11c Structured version   Visualization version   GIF version

Theorem cdleme11c 38770
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 38779. (Contributed by NM, 13-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l ≀ = (leβ€˜πΎ)
cdleme11.j ∨ = (joinβ€˜πΎ)
cdleme11.m ∧ = (meetβ€˜πΎ)
cdleme11.a 𝐴 = (Atomsβ€˜πΎ)
cdleme11.h 𝐻 = (LHypβ€˜πΎ)
cdleme11.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
Assertion
Ref Expression
cdleme11c ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ Β¬ 𝑃 ≀ (𝑆 ∨ 𝑇))

Proof of Theorem cdleme11c
StepHypRef Expression
1 simp3l 1202 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
2 simp11l 1285 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝐾 ∈ HL)
3 simp12l 1287 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑃 ∈ 𝐴)
4 simp11 1204 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
5 simp12 1205 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
6 simp13 1206 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑄 ∈ 𝐴)
7 simp23 1209 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑃 β‰  𝑄)
8 cdleme11.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
9 cdleme11.j . . . . . . . . 9 ∨ = (joinβ€˜πΎ)
10 cdleme11.m . . . . . . . . 9 ∧ = (meetβ€˜πΎ)
11 cdleme11.a . . . . . . . . 9 𝐴 = (Atomsβ€˜πΎ)
12 cdleme11.h . . . . . . . . 9 𝐻 = (LHypβ€˜πΎ)
13 cdleme11.u . . . . . . . . 9 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
148, 9, 10, 11, 12, 13lhpat2 38554 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄)) β†’ π‘ˆ ∈ 𝐴)
154, 5, 6, 7, 14syl112anc 1375 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ π‘ˆ ∈ 𝐴)
168, 9, 11hlatlej1 37883 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ 𝑃 ≀ (𝑃 ∨ π‘ˆ))
172, 3, 15, 16syl3anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑃 ≀ (𝑃 ∨ π‘ˆ))
1817adantr 482 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ 𝑃 ≀ (𝑆 ∨ 𝑇)) β†’ 𝑃 ≀ (𝑃 ∨ π‘ˆ))
196, 7jca 513 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄))
20 simp21 1207 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
21 simp22 1208 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑇 ∈ 𝐴)
22 simp3r 1203 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ π‘ˆ ≀ (𝑆 ∨ 𝑇))
2321, 22jca 513 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑇 ∈ 𝐴 ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇)))
248, 9, 10, 11, 12, 13cdleme11a 38769 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇)))) β†’ (𝑆 ∨ π‘ˆ) = (𝑆 ∨ 𝑇))
254, 5, 19, 20, 23, 24syl122anc 1380 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑆 ∨ π‘ˆ) = (𝑆 ∨ 𝑇))
2625breq2d 5118 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑃 ≀ (𝑆 ∨ π‘ˆ) ↔ 𝑃 ≀ (𝑆 ∨ 𝑇)))
27 simp21l 1291 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑆 ∈ 𝐴)
288, 9, 10, 11, 12, 13cdleme0b 38721 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) β†’ π‘ˆ β‰  𝑃)
294, 5, 6, 28syl3anc 1372 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ π‘ˆ β‰  𝑃)
3029necomd 2996 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑃 β‰  π‘ˆ)
318, 9, 11hlatexch2 37905 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) ∧ 𝑃 β‰  π‘ˆ) β†’ (𝑃 ≀ (𝑆 ∨ π‘ˆ) β†’ 𝑆 ≀ (𝑃 ∨ π‘ˆ)))
322, 3, 27, 15, 30, 31syl131anc 1384 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑃 ≀ (𝑆 ∨ π‘ˆ) β†’ 𝑆 ≀ (𝑃 ∨ π‘ˆ)))
3326, 32sylbird 260 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑃 ≀ (𝑆 ∨ 𝑇) β†’ 𝑆 ≀ (𝑃 ∨ π‘ˆ)))
3433imp 408 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ 𝑃 ≀ (𝑆 ∨ 𝑇)) β†’ 𝑆 ≀ (𝑃 ∨ π‘ˆ))
358, 9, 11hlatlej2 37884 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝑄 ≀ (𝑃 ∨ 𝑄))
362, 3, 6, 35syl3anc 1372 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑄 ≀ (𝑃 ∨ 𝑄))
378, 9, 10, 11, 12, 13cdleme0cp 38723 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴)) β†’ (𝑃 ∨ π‘ˆ) = (𝑃 ∨ 𝑄))
384, 5, 6, 37syl12anc 836 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑃 ∨ π‘ˆ) = (𝑃 ∨ 𝑄))
3936, 38breqtrrd 5134 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑄 ≀ (𝑃 ∨ π‘ˆ))
4039adantr 482 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ 𝑃 ≀ (𝑆 ∨ 𝑇)) β†’ 𝑄 ≀ (𝑃 ∨ π‘ˆ))
412hllatd 37872 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝐾 ∈ Lat)
42 eqid 2733 . . . . . . . . . . 11 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
4342, 11atbase 37797 . . . . . . . . . 10 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
4427, 43syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
4542, 11atbase 37797 . . . . . . . . . 10 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
466, 45syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
4742, 9, 11hlatjcl 37875 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ (𝑃 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
482, 3, 15, 47syl3anc 1372 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑃 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
4942, 8, 9latjle12 18344 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))) β†’ ((𝑆 ≀ (𝑃 ∨ π‘ˆ) ∧ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ↔ (𝑆 ∨ 𝑄) ≀ (𝑃 ∨ π‘ˆ)))
5041, 44, 46, 48, 49syl13anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ≀ (𝑃 ∨ π‘ˆ) ∧ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ↔ (𝑆 ∨ 𝑄) ≀ (𝑃 ∨ π‘ˆ)))
5150adantr 482 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ 𝑃 ≀ (𝑆 ∨ 𝑇)) β†’ ((𝑆 ≀ (𝑃 ∨ π‘ˆ) ∧ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ↔ (𝑆 ∨ 𝑄) ≀ (𝑃 ∨ π‘ˆ)))
5234, 40, 51mpbi2and 711 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ 𝑃 ≀ (𝑆 ∨ 𝑇)) β†’ (𝑆 ∨ 𝑄) ≀ (𝑃 ∨ π‘ˆ))
5342, 11atbase 37797 . . . . . . . . . 10 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
543, 53syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
5542, 8, 9latnlej1r 18352 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑆 β‰  𝑄)
5641, 44, 54, 46, 1, 55syl131anc 1384 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑆 β‰  𝑄)
578, 9, 11ps-1 37986 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 β‰  𝑄) ∧ (𝑃 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑆 ∨ 𝑄) ≀ (𝑃 ∨ π‘ˆ) ↔ (𝑆 ∨ 𝑄) = (𝑃 ∨ π‘ˆ)))
582, 27, 6, 56, 3, 15, 57syl132anc 1389 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∨ 𝑄) ≀ (𝑃 ∨ π‘ˆ) ↔ (𝑆 ∨ 𝑄) = (𝑃 ∨ π‘ˆ)))
5958adantr 482 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ 𝑃 ≀ (𝑆 ∨ 𝑇)) β†’ ((𝑆 ∨ 𝑄) ≀ (𝑃 ∨ π‘ˆ) ↔ (𝑆 ∨ 𝑄) = (𝑃 ∨ π‘ˆ)))
6052, 59mpbid 231 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ 𝑃 ≀ (𝑆 ∨ 𝑇)) β†’ (𝑆 ∨ 𝑄) = (𝑃 ∨ π‘ˆ))
6118, 60breqtrrd 5134 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ 𝑃 ≀ (𝑆 ∨ 𝑇)) β†’ 𝑃 ≀ (𝑆 ∨ 𝑄))
6261ex 414 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑃 ≀ (𝑆 ∨ 𝑇) β†’ 𝑃 ≀ (𝑆 ∨ 𝑄)))
638, 9, 11hlatexch2 37905 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ≀ (𝑆 ∨ 𝑄) β†’ 𝑆 ≀ (𝑃 ∨ 𝑄)))
642, 3, 27, 6, 7, 63syl131anc 1384 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑃 ≀ (𝑆 ∨ 𝑄) β†’ 𝑆 ≀ (𝑃 ∨ 𝑄)))
6562, 64syld 47 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑃 ≀ (𝑆 ∨ 𝑇) β†’ 𝑆 ≀ (𝑃 ∨ 𝑄)))
661, 65mtod 197 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ Β¬ 𝑃 ≀ (𝑆 ∨ 𝑇))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  lecple 17145  joincjn 18205  meetcmee 18206  Latclat 18325  Atomscatm 37771  HLchlt 37858  LHypclh 38493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-p1 18320  df-lat 18326  df-clat 18393  df-oposet 37684  df-ol 37686  df-oml 37687  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859  df-psubsp 38012  df-pmap 38013  df-padd 38305  df-lhyp 38497
This theorem is referenced by:  cdleme11dN  38771  cdleme11e  38772
  Copyright terms: Public domain W3C validator