Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11c Structured version   Visualization version   GIF version

Theorem cdleme11c 40306
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40315. (Contributed by NM, 13-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l = (le‘𝐾)
cdleme11.j = (join‘𝐾)
cdleme11.m = (meet‘𝐾)
cdleme11.a 𝐴 = (Atoms‘𝐾)
cdleme11.h 𝐻 = (LHyp‘𝐾)
cdleme11.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme11c ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ¬ 𝑃 (𝑆 𝑇))

Proof of Theorem cdleme11c
StepHypRef Expression
1 simp3l 1202 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ¬ 𝑆 (𝑃 𝑄))
2 simp11l 1285 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝐾 ∈ HL)
3 simp12l 1287 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃𝐴)
4 simp11 1204 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simp12 1205 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 simp13 1206 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑄𝐴)
7 simp23 1209 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃𝑄)
8 cdleme11.l . . . . . . . . 9 = (le‘𝐾)
9 cdleme11.j . . . . . . . . 9 = (join‘𝐾)
10 cdleme11.m . . . . . . . . 9 = (meet‘𝐾)
11 cdleme11.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
12 cdleme11.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
13 cdleme11.u . . . . . . . . 9 𝑈 = ((𝑃 𝑄) 𝑊)
148, 9, 10, 11, 12, 13lhpat2 40090 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
154, 5, 6, 7, 14syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑈𝐴)
168, 9, 11hlatlej1 39420 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → 𝑃 (𝑃 𝑈))
172, 3, 15, 16syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃 (𝑃 𝑈))
1817adantr 480 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → 𝑃 (𝑃 𝑈))
196, 7jca 511 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑄𝐴𝑃𝑄))
20 simp21 1207 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
21 simp22 1208 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑇𝐴)
22 simp3r 1203 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑈 (𝑆 𝑇))
2321, 22jca 511 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑇𝐴𝑈 (𝑆 𝑇)))
248, 9, 10, 11, 12, 13cdleme11a 40305 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → (𝑆 𝑈) = (𝑆 𝑇))
254, 5, 19, 20, 23, 24syl122anc 1381 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑆 𝑈) = (𝑆 𝑇))
2625breq2d 5103 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 (𝑆 𝑈) ↔ 𝑃 (𝑆 𝑇)))
27 simp21l 1291 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑆𝐴)
288, 9, 10, 11, 12, 13cdleme0b 40257 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) → 𝑈𝑃)
294, 5, 6, 28syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑈𝑃)
3029necomd 2983 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃𝑈)
318, 9, 11hlatexch2 39441 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑈𝐴) ∧ 𝑃𝑈) → (𝑃 (𝑆 𝑈) → 𝑆 (𝑃 𝑈)))
322, 3, 27, 15, 30, 31syl131anc 1385 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 (𝑆 𝑈) → 𝑆 (𝑃 𝑈)))
3326, 32sylbird 260 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 (𝑆 𝑇) → 𝑆 (𝑃 𝑈)))
3433imp 406 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → 𝑆 (𝑃 𝑈))
358, 9, 11hlatlej2 39421 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
362, 3, 6, 35syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑄 (𝑃 𝑄))
378, 9, 10, 11, 12, 13cdleme0cp 40259 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → (𝑃 𝑈) = (𝑃 𝑄))
384, 5, 6, 37syl12anc 836 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 𝑈) = (𝑃 𝑄))
3936, 38breqtrrd 5119 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑄 (𝑃 𝑈))
4039adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → 𝑄 (𝑃 𝑈))
412hllatd 39409 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝐾 ∈ Lat)
42 eqid 2731 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
4342, 11atbase 39334 . . . . . . . . . 10 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
4427, 43syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑆 ∈ (Base‘𝐾))
4542, 11atbase 39334 . . . . . . . . . 10 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
466, 45syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑄 ∈ (Base‘𝐾))
4742, 9, 11hlatjcl 39412 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
482, 3, 15, 47syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 𝑈) ∈ (Base‘𝐾))
4942, 8, 9latjle12 18356 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾))) → ((𝑆 (𝑃 𝑈) ∧ 𝑄 (𝑃 𝑈)) ↔ (𝑆 𝑄) (𝑃 𝑈)))
5041, 44, 46, 48, 49syl13anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ((𝑆 (𝑃 𝑈) ∧ 𝑄 (𝑃 𝑈)) ↔ (𝑆 𝑄) (𝑃 𝑈)))
5150adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → ((𝑆 (𝑃 𝑈) ∧ 𝑄 (𝑃 𝑈)) ↔ (𝑆 𝑄) (𝑃 𝑈)))
5234, 40, 51mpbi2and 712 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → (𝑆 𝑄) (𝑃 𝑈))
5342, 11atbase 39334 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
543, 53syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃 ∈ (Base‘𝐾))
5542, 8, 9latnlej1r 18364 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝑄)
5641, 44, 54, 46, 1, 55syl131anc 1385 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑆𝑄)
578, 9, 11ps-1 39522 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑄𝐴𝑆𝑄) ∧ (𝑃𝐴𝑈𝐴)) → ((𝑆 𝑄) (𝑃 𝑈) ↔ (𝑆 𝑄) = (𝑃 𝑈)))
582, 27, 6, 56, 3, 15, 57syl132anc 1390 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑄) (𝑃 𝑈) ↔ (𝑆 𝑄) = (𝑃 𝑈)))
5958adantr 480 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → ((𝑆 𝑄) (𝑃 𝑈) ↔ (𝑆 𝑄) = (𝑃 𝑈)))
6052, 59mpbid 232 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → (𝑆 𝑄) = (𝑃 𝑈))
6118, 60breqtrrd 5119 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ 𝑃 (𝑆 𝑇)) → 𝑃 (𝑆 𝑄))
6261ex 412 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 (𝑆 𝑇) → 𝑃 (𝑆 𝑄)))
638, 9, 11hlatexch2 39441 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 (𝑆 𝑄) → 𝑆 (𝑃 𝑄)))
642, 3, 27, 6, 7, 63syl131anc 1385 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 (𝑆 𝑄) → 𝑆 (𝑃 𝑄)))
6562, 64syld 47 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 (𝑆 𝑇) → 𝑆 (𝑃 𝑄)))
661, 65mtod 198 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ¬ 𝑃 (𝑆 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39308  HLchlt 39395  LHypclh 40029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033
This theorem is referenced by:  cdleme11dN  40307  cdleme11e  40308
  Copyright terms: Public domain W3C validator