| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climconst | Structured version Visualization version GIF version | ||
| Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climconst.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climconst.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climconst.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| climconst.4 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| climconst.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| Ref | Expression |
|---|---|
| climconst | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climconst.2 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | uzid 12768 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 4 | climconst.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleqtrrdi 2839 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 6 | climconst.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 7 | 6 | subidd 11481 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − 𝐴) = 0) |
| 8 | 7 | fveq2d 6830 | . . . . . . . 8 ⊢ (𝜑 → (abs‘(𝐴 − 𝐴)) = (abs‘0)) |
| 9 | abs0 15210 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
| 10 | 8, 9 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝜑 → (abs‘(𝐴 − 𝐴)) = 0) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (abs‘(𝐴 − 𝐴)) = 0) |
| 12 | rpgt0 12924 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → 0 < 𝑥) | |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥) |
| 14 | 11, 13 | eqbrtrd 5117 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (abs‘(𝐴 − 𝐴)) < 𝑥) |
| 15 | 14 | ralrimivw 3125 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥) |
| 16 | fveq2 6826 | . . . . . . 7 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = (ℤ≥‘𝑀)) | |
| 17 | 16, 4 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = 𝑍) |
| 18 | 17 | raleqdv 3290 | . . . . 5 ⊢ (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥)) |
| 19 | 18 | rspcev 3579 | . . . 4 ⊢ ((𝑀 ∈ 𝑍 ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
| 20 | 5, 15, 19 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
| 21 | 20 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
| 22 | climconst.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 23 | climconst.5 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 24 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| 25 | 4, 1, 22, 23, 6, 24 | clim2c 15430 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥)) |
| 26 | 21, 25 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 < clt 11168 − cmin 11365 ℤcz 12489 ℤ≥cuz 12753 ℝ+crp 12911 abscabs 15159 ⇝ cli 15409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 |
| This theorem is referenced by: climconst2 15473 fsumcvg 15637 expcnv 15789 ntrivcvgfvn0 15824 fprodcvg 15855 fprodntriv 15867 faclim2 35720 clim1fr1 45583 climneg 45592 ioodvbdlimc1lem2 45914 ioodvbdlimc2lem 45916 fourierdlem103 46191 fourierdlem104 46192 etransclem48 46264 |
| Copyright terms: Public domain | W3C validator |