| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climconst | Structured version Visualization version GIF version | ||
| Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climconst.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climconst.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climconst.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| climconst.4 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| climconst.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| Ref | Expression |
|---|---|
| climconst | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climconst.2 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | uzid 12753 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 4 | climconst.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleqtrrdi 2842 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 6 | climconst.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 7 | 6 | subidd 11466 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − 𝐴) = 0) |
| 8 | 7 | fveq2d 6832 | . . . . . . . 8 ⊢ (𝜑 → (abs‘(𝐴 − 𝐴)) = (abs‘0)) |
| 9 | abs0 15198 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
| 10 | 8, 9 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝜑 → (abs‘(𝐴 − 𝐴)) = 0) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (abs‘(𝐴 − 𝐴)) = 0) |
| 12 | rpgt0 12909 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → 0 < 𝑥) | |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥) |
| 14 | 11, 13 | eqbrtrd 5115 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (abs‘(𝐴 − 𝐴)) < 𝑥) |
| 15 | 14 | ralrimivw 3128 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥) |
| 16 | fveq2 6828 | . . . . . . 7 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = (ℤ≥‘𝑀)) | |
| 17 | 16, 4 | eqtr4di 2784 | . . . . . 6 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = 𝑍) |
| 18 | 17 | raleqdv 3292 | . . . . 5 ⊢ (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥)) |
| 19 | 18 | rspcev 3572 | . . . 4 ⊢ ((𝑀 ∈ 𝑍 ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
| 20 | 5, 15, 19 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
| 21 | 20 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
| 22 | climconst.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 23 | climconst.5 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 24 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| 25 | 4, 1, 22, 23, 6, 24 | clim2c 15418 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥)) |
| 26 | 21, 25 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 ℂcc 11010 0cc0 11012 < clt 11152 − cmin 11350 ℤcz 12474 ℤ≥cuz 12738 ℝ+crp 12896 abscabs 15147 ⇝ cli 15397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-n0 12388 df-z 12475 df-uz 12739 df-rp 12897 df-seq 13915 df-exp 13975 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-clim 15401 |
| This theorem is referenced by: climconst2 15461 fsumcvg 15625 expcnv 15777 ntrivcvgfvn0 15812 fprodcvg 15843 fprodntriv 15855 faclim2 35799 clim1fr1 45706 climneg 45715 ioodvbdlimc1lem2 46035 ioodvbdlimc2lem 46037 fourierdlem103 46312 fourierdlem104 46313 etransclem48 46385 |
| Copyright terms: Public domain | W3C validator |