MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climconst Structured version   Visualization version   GIF version

Theorem climconst 15515
Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climconst.1 𝑍 = (ℤ𝑀)
climconst.2 (𝜑𝑀 ∈ ℤ)
climconst.3 (𝜑𝐹𝑉)
climconst.4 (𝜑𝐴 ∈ ℂ)
climconst.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
climconst (𝜑𝐹𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climconst
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climconst.2 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2 uzid 12814 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
4 climconst.1 . . . . 5 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2840 . . . 4 (𝜑𝑀𝑍)
6 climconst.4 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
76subidd 11527 . . . . . . . . 9 (𝜑 → (𝐴𝐴) = 0)
87fveq2d 6864 . . . . . . . 8 (𝜑 → (abs‘(𝐴𝐴)) = (abs‘0))
9 abs0 15257 . . . . . . . 8 (abs‘0) = 0
108, 9eqtrdi 2781 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐴)) = 0)
1110adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝐴𝐴)) = 0)
12 rpgt0 12970 . . . . . . 7 (𝑥 ∈ ℝ+ → 0 < 𝑥)
1312adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 < 𝑥)
1411, 13eqbrtrd 5131 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝐴𝐴)) < 𝑥)
1514ralrimivw 3130 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥)
16 fveq2 6860 . . . . . . 7 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
1716, 4eqtr4di 2783 . . . . . 6 (𝑗 = 𝑀 → (ℤ𝑗) = 𝑍)
1817raleqdv 3301 . . . . 5 (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥 ↔ ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥))
1918rspcev 3591 . . . 4 ((𝑀𝑍 ∧ ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
205, 15, 19syl2an2r 685 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
2120ralrimiva 3126 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
22 climconst.3 . . 3 (𝜑𝐹𝑉)
23 climconst.5 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
246adantr 480 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
254, 1, 22, 23, 6, 24clim2c 15477 . 2 (𝜑 → (𝐹𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥))
2621, 25mpbird 257 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5109  cfv 6513  (class class class)co 7389  cc 11072  0cc0 11074   < clt 11214  cmin 11411  cz 12535  cuz 12799  +crp 12957  abscabs 15206  cli 15456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-seq 13973  df-exp 14033  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460
This theorem is referenced by:  climconst2  15520  fsumcvg  15684  expcnv  15836  ntrivcvgfvn0  15871  fprodcvg  15902  fprodntriv  15914  faclim2  35730  clim1fr1  45592  climneg  45601  ioodvbdlimc1lem2  45923  ioodvbdlimc2lem  45925  fourierdlem103  46200  fourierdlem104  46201  etransclem48  46273
  Copyright terms: Public domain W3C validator