| Step | Hyp | Ref
| Expression |
| 1 | | climsup.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| 2 | 1 | frnd 6719 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 3 | 1 | ffnd 6712 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 4 | | climsup.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 5 | | uzid 12872 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 7 | | climsup.1 |
. . . . . . . . . . . 12
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 8 | 6, 7 | eleqtrrdi 2846 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 9 | | fnfvelrn 7075 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍) → (𝐹‘𝑀) ∈ ran 𝐹) |
| 10 | 3, 8, 9 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑀) ∈ ran 𝐹) |
| 11 | 10 | ne0d 4322 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ≠ ∅) |
| 12 | | climsup.5 |
. . . . . . . . . 10
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥) |
| 13 | | breq1 5127 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘𝑘) → (𝑦 ≤ 𝑥 ↔ (𝐹‘𝑘) ≤ 𝑥)) |
| 14 | 13 | ralrn 7083 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝑍 → (∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥)) |
| 15 | 14 | rexbidv 3165 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝑍 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥)) |
| 16 | 3, 15 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥)) |
| 17 | 12, 16 | mpbird 257 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
| 18 | 2, 11, 17 | 3jca 1128 |
. . . . . . . 8
⊢ (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) |
| 19 | | suprcl 12207 |
. . . . . . . 8
⊢ ((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈
ℝ) |
| 20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝐹, ℝ, < ) ∈
ℝ) |
| 21 | | ltsubrp 13050 |
. . . . . . 7
⊢ ((sup(ran
𝐹, ℝ, < ) ∈
ℝ ∧ 𝑦 ∈
ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < )) |
| 22 | 20, 21 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (sup(ran
𝐹, ℝ, < ) −
𝑦) < sup(ran 𝐹, ℝ, <
)) |
| 23 | 18 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) |
| 24 | | rpre 13022 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
| 25 | | resubcl 11552 |
. . . . . . . 8
⊢ ((sup(ran
𝐹, ℝ, < ) ∈
ℝ ∧ 𝑦 ∈
ℝ) → (sup(ran 𝐹,
ℝ, < ) − 𝑦)
∈ ℝ) |
| 26 | 20, 24, 25 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (sup(ran
𝐹, ℝ, < ) −
𝑦) ∈
ℝ) |
| 27 | | suprlub 12211 |
. . . . . . 7
⊢ (((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘)) |
| 28 | 23, 26, 27 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((sup(ran
𝐹, ℝ, < ) −
𝑦) < sup(ran 𝐹, ℝ, < ) ↔
∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘)) |
| 29 | 22, 28 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘) |
| 30 | | breq2 5128 |
. . . . . . . 8
⊢ (𝑘 = (𝐹‘𝑗) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗))) |
| 31 | 30 | rexrn 7082 |
. . . . . . 7
⊢ (𝐹 Fn 𝑍 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗))) |
| 32 | 3, 31 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗))) |
| 33 | 32 | biimpa 476 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘) → ∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗)) |
| 34 | 29, 33 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗)) |
| 35 | | ffvelcdm 7076 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
| 36 | 1, 35 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
| 37 | 36 | ad2ant2r 747 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑗) ∈ ℝ) |
| 38 | 1 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐹:𝑍⟶ℝ) |
| 39 | 7 | uztrn2 12876 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 40 | | ffvelcdm 7076 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| 41 | 38, 39, 40 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ∈ ℝ) |
| 42 | 20 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → sup(ran 𝐹, ℝ, < ) ∈
ℝ) |
| 43 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → 𝑘 ∈ (ℤ≥‘𝑗)) |
| 44 | | fzssuz 13587 |
. . . . . . . . . . . . . 14
⊢ (𝑗...𝑘) ⊆ (ℤ≥‘𝑗) |
| 45 | | uzss 12880 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑗) ⊆
(ℤ≥‘𝑀)) |
| 46 | 45, 7 | sseqtrrdi 4005 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑗) ⊆ 𝑍) |
| 47 | 46, 7 | eleq2s 2853 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝑍 → (ℤ≥‘𝑗) ⊆ 𝑍) |
| 48 | 47 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) →
(ℤ≥‘𝑗) ⊆ 𝑍) |
| 49 | 44, 48 | sstrid 3975 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑗...𝑘) ⊆ 𝑍) |
| 50 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℝ) |
| 51 | 50 | ralrimiva 3133 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝑍⟶ℝ → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ) |
| 52 | 1, 51 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ) |
| 53 | 52 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ) |
| 54 | | ssralv 4032 |
. . . . . . . . . . . . 13
⊢ ((𝑗...𝑘) ⊆ 𝑍 → (∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ → ∀𝑛 ∈ (𝑗...𝑘)(𝐹‘𝑛) ∈ ℝ)) |
| 55 | 49, 53, 54 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∀𝑛 ∈ (𝑗...𝑘)(𝐹‘𝑛) ∈ ℝ) |
| 56 | 55 | r19.21bi 3238 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ (𝑗...𝑘)) → (𝐹‘𝑛) ∈ ℝ) |
| 57 | | fzssuz 13587 |
. . . . . . . . . . . . . 14
⊢ (𝑗...(𝑘 − 1)) ⊆
(ℤ≥‘𝑗) |
| 58 | 57, 48 | sstrid 3975 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑗...(𝑘 − 1)) ⊆ 𝑍) |
| 59 | 58 | sselda 3963 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → 𝑛 ∈ 𝑍) |
| 60 | | climsup.4 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
| 61 | 60 | ralrimiva 3133 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
| 62 | 61 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
| 63 | | fveq2 6881 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
| 64 | | fvoveq1 7433 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) |
| 65 | 63, 64 | breq12d 5137 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1)))) |
| 66 | 65 | rspccva 3605 |
. . . . . . . . . . . . 13
⊢
((∀𝑘 ∈
𝑍 (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1)) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1))) |
| 67 | 62, 66 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1))) |
| 68 | 59, 67 | syldan 591 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1))) |
| 69 | 43, 56, 68 | monoord 14055 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑗) ≤ (𝐹‘𝑘)) |
| 70 | 37, 41, 42, 69 | lesub2dd 11859 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗))) |
| 71 | 42, 41 | resubcld 11670 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) ∈ ℝ) |
| 72 | 42, 37 | resubcld 11670 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) ∈ ℝ) |
| 73 | 24 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → 𝑦 ∈ ℝ) |
| 74 | | lelttr 11330 |
. . . . . . . . . 10
⊢
(((sup(ran 𝐹,
ℝ, < ) − (𝐹‘𝑘)) ∈ ℝ ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) < 𝑦)) |
| 75 | 71, 72, 73, 74 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (((sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) < 𝑦)) |
| 76 | 70, 75 | mpand 695 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦 → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) < 𝑦)) |
| 77 | | ltsub23 11722 |
. . . . . . . . 9
⊢ ((sup(ran
𝐹, ℝ, < ) ∈
ℝ ∧ 𝑦 ∈
ℝ ∧ (𝐹‘𝑗) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦)) |
| 78 | 42, 73, 37, 77 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦)) |
| 79 | 18 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) |
| 80 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐹 Fn 𝑍) |
| 81 | | fnfvelrn 7075 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ran 𝐹) |
| 82 | 80, 39, 81 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ∈ ran 𝐹) |
| 83 | | suprub 12208 |
. . . . . . . . . . 11
⊢ (((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝐹‘𝑘) ∈ ran 𝐹) → (𝐹‘𝑘) ≤ sup(ran 𝐹, ℝ, < )) |
| 84 | 79, 82, 83 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ≤ sup(ran 𝐹, ℝ, < )) |
| 85 | 41, 42, 84 | abssuble0d 15456 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) = (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘))) |
| 86 | 85 | breq1d 5134 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦 ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) < 𝑦)) |
| 87 | 76, 78, 86 | 3imtr4d 294 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) → (abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) |
| 88 | 87 | anassrs 467 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) → (abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) |
| 89 | 88 | ralrimdva 3141 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) |
| 90 | 89 | reximdva 3154 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) |
| 91 | 34, 90 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦) |
| 92 | 91 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦) |
| 93 | 7 | fvexi 6895 |
. . . 4
⊢ 𝑍 ∈ V |
| 94 | | fex 7223 |
. . . 4
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑍 ∈ V) → 𝐹 ∈ V) |
| 95 | 1, 93, 94 | sylancl 586 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
| 96 | | eqidd 2737 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 97 | 20 | recnd 11268 |
. . 3
⊢ (𝜑 → sup(ran 𝐹, ℝ, < ) ∈
ℂ) |
| 98 | 1, 40 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| 99 | 98 | recnd 11268 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 100 | 7, 4, 95, 96, 97, 99 | clim2c 15526 |
. 2
⊢ (𝜑 → (𝐹 ⇝ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑦 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) |
| 101 | 92, 100 | mpbird 257 |
1
⊢ (𝜑 → 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) |