| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | climsup.3 | . . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | 
| 2 | 1 | frnd 6744 | . . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) | 
| 3 | 1 | ffnd 6737 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn 𝑍) | 
| 4 |  | climsup.2 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 5 |  | uzid 12893 | . . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) | 
| 6 | 4, 5 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) | 
| 7 |  | climsup.1 | . . . . . . . . . . . 12
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 8 | 6, 7 | eleqtrrdi 2852 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ 𝑍) | 
| 9 |  | fnfvelrn 7100 | . . . . . . . . . . 11
⊢ ((𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍) → (𝐹‘𝑀) ∈ ran 𝐹) | 
| 10 | 3, 8, 9 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑀) ∈ ran 𝐹) | 
| 11 | 10 | ne0d 4342 | . . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ≠ ∅) | 
| 12 |  | climsup.5 | . . . . . . . . . 10
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥) | 
| 13 |  | breq1 5146 | . . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘𝑘) → (𝑦 ≤ 𝑥 ↔ (𝐹‘𝑘) ≤ 𝑥)) | 
| 14 | 13 | ralrn 7108 | . . . . . . . . . . . 12
⊢ (𝐹 Fn 𝑍 → (∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥)) | 
| 15 | 14 | rexbidv 3179 | . . . . . . . . . . 11
⊢ (𝐹 Fn 𝑍 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥)) | 
| 16 | 3, 15 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥)) | 
| 17 | 12, 16 | mpbird 257 | . . . . . . . . 9
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) | 
| 18 | 2, 11, 17 | 3jca 1129 | . . . . . . . 8
⊢ (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) | 
| 19 |  | suprcl 12228 | . . . . . . . 8
⊢ ((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈
ℝ) | 
| 20 | 18, 19 | syl 17 | . . . . . . 7
⊢ (𝜑 → sup(ran 𝐹, ℝ, < ) ∈
ℝ) | 
| 21 |  | ltsubrp 13071 | . . . . . . 7
⊢ ((sup(ran
𝐹, ℝ, < ) ∈
ℝ ∧ 𝑦 ∈
ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < )) | 
| 22 | 20, 21 | sylan 580 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (sup(ran
𝐹, ℝ, < ) −
𝑦) < sup(ran 𝐹, ℝ, <
)) | 
| 23 | 18 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) | 
| 24 |  | rpre 13043 | . . . . . . . 8
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) | 
| 25 |  | resubcl 11573 | . . . . . . . 8
⊢ ((sup(ran
𝐹, ℝ, < ) ∈
ℝ ∧ 𝑦 ∈
ℝ) → (sup(ran 𝐹,
ℝ, < ) − 𝑦)
∈ ℝ) | 
| 26 | 20, 24, 25 | syl2an 596 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (sup(ran
𝐹, ℝ, < ) −
𝑦) ∈
ℝ) | 
| 27 |  | suprlub 12232 | . . . . . . 7
⊢ (((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘)) | 
| 28 | 23, 26, 27 | syl2anc 584 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((sup(ran
𝐹, ℝ, < ) −
𝑦) < sup(ran 𝐹, ℝ, < ) ↔
∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘)) | 
| 29 | 22, 28 | mpbid 232 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘) | 
| 30 |  | breq2 5147 | . . . . . . . 8
⊢ (𝑘 = (𝐹‘𝑗) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗))) | 
| 31 | 30 | rexrn 7107 | . . . . . . 7
⊢ (𝐹 Fn 𝑍 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗))) | 
| 32 | 3, 31 | syl 17 | . . . . . 6
⊢ (𝜑 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗))) | 
| 33 | 32 | biimpa 476 | . . . . 5
⊢ ((𝜑 ∧ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘) → ∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗)) | 
| 34 | 29, 33 | syldan 591 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗)) | 
| 35 |  | ffvelcdm 7101 | . . . . . . . . . . . 12
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) | 
| 36 | 1, 35 | sylan 580 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) | 
| 37 | 36 | ad2ant2r 747 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑗) ∈ ℝ) | 
| 38 | 1 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐹:𝑍⟶ℝ) | 
| 39 | 7 | uztrn2 12897 | . . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) | 
| 40 |  | ffvelcdm 7101 | . . . . . . . . . . 11
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | 
| 41 | 38, 39, 40 | syl2an 596 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ∈ ℝ) | 
| 42 | 20 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → sup(ran 𝐹, ℝ, < ) ∈
ℝ) | 
| 43 |  | simprr 773 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → 𝑘 ∈ (ℤ≥‘𝑗)) | 
| 44 |  | fzssuz 13605 | . . . . . . . . . . . . . 14
⊢ (𝑗...𝑘) ⊆ (ℤ≥‘𝑗) | 
| 45 |  | uzss 12901 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑗) ⊆
(ℤ≥‘𝑀)) | 
| 46 | 45, 7 | sseqtrrdi 4025 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑗) ⊆ 𝑍) | 
| 47 | 46, 7 | eleq2s 2859 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝑍 → (ℤ≥‘𝑗) ⊆ 𝑍) | 
| 48 | 47 | ad2antrl 728 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) →
(ℤ≥‘𝑗) ⊆ 𝑍) | 
| 49 | 44, 48 | sstrid 3995 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑗...𝑘) ⊆ 𝑍) | 
| 50 |  | ffvelcdm 7101 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℝ) | 
| 51 | 50 | ralrimiva 3146 | . . . . . . . . . . . . . . 15
⊢ (𝐹:𝑍⟶ℝ → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ) | 
| 52 | 1, 51 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ) | 
| 53 | 52 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ) | 
| 54 |  | ssralv 4052 | . . . . . . . . . . . . 13
⊢ ((𝑗...𝑘) ⊆ 𝑍 → (∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ → ∀𝑛 ∈ (𝑗...𝑘)(𝐹‘𝑛) ∈ ℝ)) | 
| 55 | 49, 53, 54 | sylc 65 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∀𝑛 ∈ (𝑗...𝑘)(𝐹‘𝑛) ∈ ℝ) | 
| 56 | 55 | r19.21bi 3251 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ (𝑗...𝑘)) → (𝐹‘𝑛) ∈ ℝ) | 
| 57 |  | fzssuz 13605 | . . . . . . . . . . . . . 14
⊢ (𝑗...(𝑘 − 1)) ⊆
(ℤ≥‘𝑗) | 
| 58 | 57, 48 | sstrid 3995 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑗...(𝑘 − 1)) ⊆ 𝑍) | 
| 59 | 58 | sselda 3983 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → 𝑛 ∈ 𝑍) | 
| 60 |  | climsup.4 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) | 
| 61 | 60 | ralrimiva 3146 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) | 
| 62 | 61 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) | 
| 63 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) | 
| 64 |  | fvoveq1 7454 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) | 
| 65 | 63, 64 | breq12d 5156 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1)))) | 
| 66 | 65 | rspccva 3621 | . . . . . . . . . . . . 13
⊢
((∀𝑘 ∈
𝑍 (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1)) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1))) | 
| 67 | 62, 66 | sylan 580 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1))) | 
| 68 | 59, 67 | syldan 591 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1))) | 
| 69 | 43, 56, 68 | monoord 14073 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑗) ≤ (𝐹‘𝑘)) | 
| 70 | 37, 41, 42, 69 | lesub2dd 11880 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗))) | 
| 71 | 42, 41 | resubcld 11691 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) ∈ ℝ) | 
| 72 | 42, 37 | resubcld 11691 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) ∈ ℝ) | 
| 73 | 24 | ad2antlr 727 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → 𝑦 ∈ ℝ) | 
| 74 |  | lelttr 11351 | . . . . . . . . . 10
⊢
(((sup(ran 𝐹,
ℝ, < ) − (𝐹‘𝑘)) ∈ ℝ ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) < 𝑦)) | 
| 75 | 71, 72, 73, 74 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (((sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) < 𝑦)) | 
| 76 | 70, 75 | mpand 695 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦 → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) < 𝑦)) | 
| 77 |  | ltsub23 11743 | . . . . . . . . 9
⊢ ((sup(ran
𝐹, ℝ, < ) ∈
ℝ ∧ 𝑦 ∈
ℝ ∧ (𝐹‘𝑗) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦)) | 
| 78 | 42, 73, 37, 77 | syl3anc 1373 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦)) | 
| 79 | 18 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) | 
| 80 | 3 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐹 Fn 𝑍) | 
| 81 |  | fnfvelrn 7100 | . . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ran 𝐹) | 
| 82 | 80, 39, 81 | syl2an 596 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ∈ ran 𝐹) | 
| 83 |  | suprub 12229 | . . . . . . . . . . 11
⊢ (((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝐹‘𝑘) ∈ ran 𝐹) → (𝐹‘𝑘) ≤ sup(ran 𝐹, ℝ, < )) | 
| 84 | 79, 82, 83 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ≤ sup(ran 𝐹, ℝ, < )) | 
| 85 | 41, 42, 84 | abssuble0d 15471 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) = (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘))) | 
| 86 | 85 | breq1d 5153 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦 ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) < 𝑦)) | 
| 87 | 76, 78, 86 | 3imtr4d 294 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) → (abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) | 
| 88 | 87 | anassrs 467 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) → (abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) | 
| 89 | 88 | ralrimdva 3154 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) | 
| 90 | 89 | reximdva 3168 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) | 
| 91 | 34, 90 | mpd 15 | . . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦) | 
| 92 | 91 | ralrimiva 3146 | . 2
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦) | 
| 93 | 7 | fvexi 6920 | . . . 4
⊢ 𝑍 ∈ V | 
| 94 |  | fex 7246 | . . . 4
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑍 ∈ V) → 𝐹 ∈ V) | 
| 95 | 1, 93, 94 | sylancl 586 | . . 3
⊢ (𝜑 → 𝐹 ∈ V) | 
| 96 |  | eqidd 2738 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | 
| 97 | 20 | recnd 11289 | . . 3
⊢ (𝜑 → sup(ran 𝐹, ℝ, < ) ∈
ℂ) | 
| 98 | 1, 40 | sylan 580 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | 
| 99 | 98 | recnd 11289 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | 
| 100 | 7, 4, 95, 96, 97, 99 | clim2c 15541 | . 2
⊢ (𝜑 → (𝐹 ⇝ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑦 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) | 
| 101 | 92, 100 | mpbird 257 | 1
⊢ (𝜑 → 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) |