MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsup Structured version   Visualization version   GIF version

Theorem climsup 15028
Description: A bounded monotonic sequence converges to the supremum of its range. Theorem 12-5.1 of [Gleason] p. 180. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
climsup.1 𝑍 = (ℤ𝑀)
climsup.2 (𝜑𝑀 ∈ ℤ)
climsup.3 (𝜑𝐹:𝑍⟶ℝ)
climsup.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
climsup.5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥)
Assertion
Ref Expression
climsup (𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
Distinct variable groups:   𝑥,𝑘,𝐹   𝜑,𝑘   𝑘,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥,𝑘)

Proof of Theorem climsup
Dummy variables 𝑗 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climsup.3 . . . . . . . . . 10 (𝜑𝐹:𝑍⟶ℝ)
21frnd 6523 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ ℝ)
31ffnd 6517 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑍)
4 climsup.2 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
5 uzid 12261 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ𝑀))
7 climsup.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
86, 7eleqtrrdi 2926 . . . . . . . . . . 11 (𝜑𝑀𝑍)
9 fnfvelrn 6850 . . . . . . . . . . 11 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
103, 8, 9syl2anc 586 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1110ne0d 4303 . . . . . . . . 9 (𝜑 → ran 𝐹 ≠ ∅)
12 climsup.5 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥)
13 breq1 5071 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → (𝑦𝑥 ↔ (𝐹𝑘) ≤ 𝑥))
1413ralrn 6856 . . . . . . . . . . . 12 (𝐹 Fn 𝑍 → (∀𝑦 ∈ ran 𝐹 𝑦𝑥 ↔ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
1514rexbidv 3299 . . . . . . . . . . 11 (𝐹 Fn 𝑍 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
163, 15syl 17 . . . . . . . . . 10 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
1712, 16mpbird 259 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥)
182, 11, 173jca 1124 . . . . . . . 8 (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
19 suprcl 11603 . . . . . . . 8 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
2018, 19syl 17 . . . . . . 7 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
21 ltsubrp 12428 . . . . . . 7 ((sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ))
2220, 21sylan 582 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ))
2318adantr 483 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
24 rpre 12400 . . . . . . . 8 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
25 resubcl 10952 . . . . . . . 8 ((sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ)
2620, 24, 25syl2an 597 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ)
27 suprlub 11607 . . . . . . 7 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘))
2823, 26, 27syl2anc 586 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘))
2922, 28mpbid 234 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘)
30 breq2 5072 . . . . . . . 8 (𝑘 = (𝐹𝑗) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗)))
3130rexrn 6855 . . . . . . 7 (𝐹 Fn 𝑍 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗)))
323, 31syl 17 . . . . . 6 (𝜑 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗)))
3332biimpa 479 . . . . 5 ((𝜑 ∧ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘) → ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗))
3429, 33syldan 593 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗))
35 ffvelrn 6851 . . . . . . . . . . . 12 ((𝐹:𝑍⟶ℝ ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
361, 35sylan 582 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
3736ad2ant2r 745 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ ℝ)
381adantr 483 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
397uztrn2 12265 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
40 ffvelrn 6851 . . . . . . . . . . 11 ((𝐹:𝑍⟶ℝ ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
4138, 39, 40syl2an 597 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ℝ)
4220ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
43 simprr 771 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
44 fzssuz 12951 . . . . . . . . . . . . . 14 (𝑗...𝑘) ⊆ (ℤ𝑗)
45 uzss 12268 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
4645, 7sseqtrrdi 4020 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ 𝑍)
4746, 7eleq2s 2933 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
4847ad2antrl 726 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (ℤ𝑗) ⊆ 𝑍)
4944, 48sstrid 3980 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...𝑘) ⊆ 𝑍)
50 ffvelrn 6851 . . . . . . . . . . . . . . . 16 ((𝐹:𝑍⟶ℝ ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
5150ralrimiva 3184 . . . . . . . . . . . . . . 15 (𝐹:𝑍⟶ℝ → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
521, 51syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
5352ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
54 ssralv 4035 . . . . . . . . . . . . 13 ((𝑗...𝑘) ⊆ 𝑍 → (∀𝑛𝑍 (𝐹𝑛) ∈ ℝ → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ))
5549, 53, 54sylc 65 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ)
5655r19.21bi 3210 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...𝑘)) → (𝐹𝑛) ∈ ℝ)
57 fzssuz 12951 . . . . . . . . . . . . . 14 (𝑗...(𝑘 − 1)) ⊆ (ℤ𝑗)
5857, 48sstrid 3980 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...(𝑘 − 1)) ⊆ 𝑍)
5958sselda 3969 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → 𝑛𝑍)
60 climsup.4 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
6160ralrimiva 3184 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
6261ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑘𝑍 (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
63 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
64 fvoveq1 7181 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
6563, 64breq12d 5081 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))))
6665rspccva 3624 . . . . . . . . . . . . 13 ((∀𝑘𝑍 (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ∧ 𝑛𝑍) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
6762, 66sylan 582 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛𝑍) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
6859, 67syldan 593 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
6943, 56, 68monoord 13403 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ≤ (𝐹𝑘))
7037, 41, 42, 69lesub2dd 11259 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)))
7142, 41resubcld 11070 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ∈ ℝ)
7242, 37resubcld 11070 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∈ ℝ)
7324ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑦 ∈ ℝ)
74 lelttr 10733 . . . . . . . . . 10 (((sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ∈ ℝ ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
7571, 72, 73, 74syl3anc 1367 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
7670, 75mpand 693 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦 → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
77 ltsub23 11122 . . . . . . . . 9 ((sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝐹𝑗) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦))
7842, 73, 37, 77syl3anc 1367 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦))
7918ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
803adantr 483 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → 𝐹 Fn 𝑍)
81 fnfvelrn 6850 . . . . . . . . . . . 12 ((𝐹 Fn 𝑍𝑘𝑍) → (𝐹𝑘) ∈ ran 𝐹)
8280, 39, 81syl2an 597 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ran 𝐹)
83 suprub 11604 . . . . . . . . . . 11 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝐹𝑘) ∈ ran 𝐹) → (𝐹𝑘) ≤ sup(ran 𝐹, ℝ, < ))
8479, 82, 83syl2anc 586 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ≤ sup(ran 𝐹, ℝ, < ))
8541, 42, 84abssuble0d 14794 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) = (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)))
8685breq1d 5078 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦 ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
8776, 78, 863imtr4d 296 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → (abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
8887anassrs 470 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → (abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
8988ralrimdva 3191 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
9089reximdva 3276 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
9134, 90mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)
9291ralrimiva 3184 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)
937fvexi 6686 . . . 4 𝑍 ∈ V
94 fex 6991 . . . 4 ((𝐹:𝑍⟶ℝ ∧ 𝑍 ∈ V) → 𝐹 ∈ V)
951, 93, 94sylancl 588 . . 3 (𝜑𝐹 ∈ V)
96 eqidd 2824 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
9720recnd 10671 . . 3 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
981, 40sylan 582 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
9998recnd 10671 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1007, 4, 95, 96, 97, 99clim2c 14864 . 2 (𝜑 → (𝐹 ⇝ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
10192, 100mpbird 259 1 (𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  Vcvv 3496  wss 3938  c0 4293   class class class wbr 5068  ran crn 5558   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  supcsup 8906  cr 10538  1c1 10540   + caddc 10542   < clt 10677  cle 10678  cmin 10872  cz 11984  cuz 12246  +crp 12392  ...cfz 12895  abscabs 14595  cli 14843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847
This theorem is referenced by:  isumsup2  15203  climcnds  15208  itg1climres  24317  itg2monolem1  24353  itg2i1fseq  24358  itg2i1fseq2  24359  emcllem6  25580  lmdvg  31198  esumpcvgval  31339  meaiuninclem  42769
  Copyright terms: Public domain W3C validator