MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsup Structured version   Visualization version   GIF version

Theorem climsup 15554
Description: A bounded monotonic sequence converges to the supremum of its range. Theorem 12-5.1 of [Gleason] p. 180. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
climsup.1 𝑍 = (ℤ𝑀)
climsup.2 (𝜑𝑀 ∈ ℤ)
climsup.3 (𝜑𝐹:𝑍⟶ℝ)
climsup.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
climsup.5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥)
Assertion
Ref Expression
climsup (𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
Distinct variable groups:   𝑥,𝑘,𝐹   𝜑,𝑘   𝑘,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥,𝑘)

Proof of Theorem climsup
Dummy variables 𝑗 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climsup.3 . . . . . . . . . 10 (𝜑𝐹:𝑍⟶ℝ)
21frnd 6676 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ ℝ)
31ffnd 6669 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑍)
4 climsup.2 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
5 uzid 12778 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ𝑀))
7 climsup.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
86, 7eleqtrrdi 2849 . . . . . . . . . . 11 (𝜑𝑀𝑍)
9 fnfvelrn 7031 . . . . . . . . . . 11 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
103, 8, 9syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1110ne0d 4295 . . . . . . . . 9 (𝜑 → ran 𝐹 ≠ ∅)
12 climsup.5 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥)
13 breq1 5108 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → (𝑦𝑥 ↔ (𝐹𝑘) ≤ 𝑥))
1413ralrn 7038 . . . . . . . . . . . 12 (𝐹 Fn 𝑍 → (∀𝑦 ∈ ran 𝐹 𝑦𝑥 ↔ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
1514rexbidv 3175 . . . . . . . . . . 11 (𝐹 Fn 𝑍 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
163, 15syl 17 . . . . . . . . . 10 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
1712, 16mpbird 256 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥)
182, 11, 173jca 1128 . . . . . . . 8 (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
19 suprcl 12115 . . . . . . . 8 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
2018, 19syl 17 . . . . . . 7 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
21 ltsubrp 12951 . . . . . . 7 ((sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ))
2220, 21sylan 580 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ))
2318adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
24 rpre 12923 . . . . . . . 8 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
25 resubcl 11465 . . . . . . . 8 ((sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ)
2620, 24, 25syl2an 596 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ)
27 suprlub 12119 . . . . . . 7 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘))
2823, 26, 27syl2anc 584 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘))
2922, 28mpbid 231 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘)
30 breq2 5109 . . . . . . . 8 (𝑘 = (𝐹𝑗) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗)))
3130rexrn 7037 . . . . . . 7 (𝐹 Fn 𝑍 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗)))
323, 31syl 17 . . . . . 6 (𝜑 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗)))
3332biimpa 477 . . . . 5 ((𝜑 ∧ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘) → ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗))
3429, 33syldan 591 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗))
35 ffvelcdm 7032 . . . . . . . . . . . 12 ((𝐹:𝑍⟶ℝ ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
361, 35sylan 580 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
3736ad2ant2r 745 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ ℝ)
381adantr 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
397uztrn2 12782 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
40 ffvelcdm 7032 . . . . . . . . . . 11 ((𝐹:𝑍⟶ℝ ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
4138, 39, 40syl2an 596 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ℝ)
4220ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
43 simprr 771 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
44 fzssuz 13482 . . . . . . . . . . . . . 14 (𝑗...𝑘) ⊆ (ℤ𝑗)
45 uzss 12786 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
4645, 7sseqtrrdi 3995 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ 𝑍)
4746, 7eleq2s 2856 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
4847ad2antrl 726 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (ℤ𝑗) ⊆ 𝑍)
4944, 48sstrid 3955 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...𝑘) ⊆ 𝑍)
50 ffvelcdm 7032 . . . . . . . . . . . . . . . 16 ((𝐹:𝑍⟶ℝ ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
5150ralrimiva 3143 . . . . . . . . . . . . . . 15 (𝐹:𝑍⟶ℝ → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
521, 51syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
5352ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
54 ssralv 4010 . . . . . . . . . . . . 13 ((𝑗...𝑘) ⊆ 𝑍 → (∀𝑛𝑍 (𝐹𝑛) ∈ ℝ → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ))
5549, 53, 54sylc 65 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ)
5655r19.21bi 3234 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...𝑘)) → (𝐹𝑛) ∈ ℝ)
57 fzssuz 13482 . . . . . . . . . . . . . 14 (𝑗...(𝑘 − 1)) ⊆ (ℤ𝑗)
5857, 48sstrid 3955 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...(𝑘 − 1)) ⊆ 𝑍)
5958sselda 3944 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → 𝑛𝑍)
60 climsup.4 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
6160ralrimiva 3143 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
6261ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑘𝑍 (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
63 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
64 fvoveq1 7380 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
6563, 64breq12d 5118 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))))
6665rspccva 3580 . . . . . . . . . . . . 13 ((∀𝑘𝑍 (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ∧ 𝑛𝑍) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
6762, 66sylan 580 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛𝑍) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
6859, 67syldan 591 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
6943, 56, 68monoord 13938 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ≤ (𝐹𝑘))
7037, 41, 42, 69lesub2dd 11772 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)))
7142, 41resubcld 11583 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ∈ ℝ)
7242, 37resubcld 11583 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∈ ℝ)
7324ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑦 ∈ ℝ)
74 lelttr 11245 . . . . . . . . . 10 (((sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ∈ ℝ ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
7571, 72, 73, 74syl3anc 1371 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
7670, 75mpand 693 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦 → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
77 ltsub23 11635 . . . . . . . . 9 ((sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝐹𝑗) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦))
7842, 73, 37, 77syl3anc 1371 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦))
7918ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
803adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → 𝐹 Fn 𝑍)
81 fnfvelrn 7031 . . . . . . . . . . . 12 ((𝐹 Fn 𝑍𝑘𝑍) → (𝐹𝑘) ∈ ran 𝐹)
8280, 39, 81syl2an 596 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ran 𝐹)
83 suprub 12116 . . . . . . . . . . 11 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝐹𝑘) ∈ ran 𝐹) → (𝐹𝑘) ≤ sup(ran 𝐹, ℝ, < ))
8479, 82, 83syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ≤ sup(ran 𝐹, ℝ, < ))
8541, 42, 84abssuble0d 15317 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) = (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)))
8685breq1d 5115 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦 ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
8776, 78, 863imtr4d 293 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → (abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
8887anassrs 468 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → (abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
8988ralrimdva 3151 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
9089reximdva 3165 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
9134, 90mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)
9291ralrimiva 3143 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)
937fvexi 6856 . . . 4 𝑍 ∈ V
94 fex 7176 . . . 4 ((𝐹:𝑍⟶ℝ ∧ 𝑍 ∈ V) → 𝐹 ∈ V)
951, 93, 94sylancl 586 . . 3 (𝜑𝐹 ∈ V)
96 eqidd 2737 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
9720recnd 11183 . . 3 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
981, 40sylan 580 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
9998recnd 11183 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1007, 4, 95, 96, 97, 99clim2c 15387 . 2 (𝜑 → (𝐹 ⇝ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
10192, 100mpbird 256 1 (𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  wss 3910  c0 4282   class class class wbr 5105  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  cr 11050  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cz 12499  cuz 12763  +crp 12915  ...cfz 13424  abscabs 15119  cli 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370
This theorem is referenced by:  isumsup2  15731  climcnds  15736  itg1climres  25079  itg2monolem1  25115  itg2i1fseq  25120  itg2i1fseq2  25121  emcllem6  26350  lmdvg  32534  esumpcvgval  32677  meaiuninclem  44711
  Copyright terms: Public domain W3C validator