MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsup Structured version   Visualization version   GIF version

Theorem climsup 15018
Description: A bounded monotonic sequence converges to the supremum of its range. Theorem 12-5.1 of [Gleason] p. 180. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
climsup.1 𝑍 = (ℤ𝑀)
climsup.2 (𝜑𝑀 ∈ ℤ)
climsup.3 (𝜑𝐹:𝑍⟶ℝ)
climsup.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
climsup.5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥)
Assertion
Ref Expression
climsup (𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
Distinct variable groups:   𝑥,𝑘,𝐹   𝜑,𝑘   𝑘,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥,𝑘)

Proof of Theorem climsup
Dummy variables 𝑗 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climsup.3 . . . . . . . . . 10 (𝜑𝐹:𝑍⟶ℝ)
21frnd 6494 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ ℝ)
31ffnd 6488 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑍)
4 climsup.2 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
5 uzid 12246 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ𝑀))
7 climsup.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
86, 7eleqtrrdi 2901 . . . . . . . . . . 11 (𝜑𝑀𝑍)
9 fnfvelrn 6825 . . . . . . . . . . 11 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
103, 8, 9syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1110ne0d 4251 . . . . . . . . 9 (𝜑 → ran 𝐹 ≠ ∅)
12 climsup.5 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥)
13 breq1 5033 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → (𝑦𝑥 ↔ (𝐹𝑘) ≤ 𝑥))
1413ralrn 6831 . . . . . . . . . . . 12 (𝐹 Fn 𝑍 → (∀𝑦 ∈ ran 𝐹 𝑦𝑥 ↔ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
1514rexbidv 3256 . . . . . . . . . . 11 (𝐹 Fn 𝑍 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
163, 15syl 17 . . . . . . . . . 10 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
1712, 16mpbird 260 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥)
182, 11, 173jca 1125 . . . . . . . 8 (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
19 suprcl 11588 . . . . . . . 8 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
2018, 19syl 17 . . . . . . 7 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
21 ltsubrp 12413 . . . . . . 7 ((sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ))
2220, 21sylan 583 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ))
2318adantr 484 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
24 rpre 12385 . . . . . . . 8 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
25 resubcl 10939 . . . . . . . 8 ((sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ)
2620, 24, 25syl2an 598 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ)
27 suprlub 11592 . . . . . . 7 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘))
2823, 26, 27syl2anc 587 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘))
2922, 28mpbid 235 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘)
30 breq2 5034 . . . . . . . 8 (𝑘 = (𝐹𝑗) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗)))
3130rexrn 6830 . . . . . . 7 (𝐹 Fn 𝑍 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗)))
323, 31syl 17 . . . . . 6 (𝜑 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗)))
3332biimpa 480 . . . . 5 ((𝜑 ∧ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘) → ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗))
3429, 33syldan 594 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗))
35 ffvelrn 6826 . . . . . . . . . . . 12 ((𝐹:𝑍⟶ℝ ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
361, 35sylan 583 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
3736ad2ant2r 746 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ ℝ)
381adantr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
397uztrn2 12250 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
40 ffvelrn 6826 . . . . . . . . . . 11 ((𝐹:𝑍⟶ℝ ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
4138, 39, 40syl2an 598 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ℝ)
4220ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
43 simprr 772 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
44 fzssuz 12943 . . . . . . . . . . . . . 14 (𝑗...𝑘) ⊆ (ℤ𝑗)
45 uzss 12253 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
4645, 7sseqtrrdi 3966 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ 𝑍)
4746, 7eleq2s 2908 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
4847ad2antrl 727 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (ℤ𝑗) ⊆ 𝑍)
4944, 48sstrid 3926 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...𝑘) ⊆ 𝑍)
50 ffvelrn 6826 . . . . . . . . . . . . . . . 16 ((𝐹:𝑍⟶ℝ ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
5150ralrimiva 3149 . . . . . . . . . . . . . . 15 (𝐹:𝑍⟶ℝ → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
521, 51syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
5352ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
54 ssralv 3981 . . . . . . . . . . . . 13 ((𝑗...𝑘) ⊆ 𝑍 → (∀𝑛𝑍 (𝐹𝑛) ∈ ℝ → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ))
5549, 53, 54sylc 65 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ)
5655r19.21bi 3173 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...𝑘)) → (𝐹𝑛) ∈ ℝ)
57 fzssuz 12943 . . . . . . . . . . . . . 14 (𝑗...(𝑘 − 1)) ⊆ (ℤ𝑗)
5857, 48sstrid 3926 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...(𝑘 − 1)) ⊆ 𝑍)
5958sselda 3915 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → 𝑛𝑍)
60 climsup.4 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
6160ralrimiva 3149 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
6261ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑘𝑍 (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
63 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
64 fvoveq1 7158 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
6563, 64breq12d 5043 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))))
6665rspccva 3570 . . . . . . . . . . . . 13 ((∀𝑘𝑍 (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ∧ 𝑛𝑍) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
6762, 66sylan 583 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛𝑍) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
6859, 67syldan 594 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
6943, 56, 68monoord 13396 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ≤ (𝐹𝑘))
7037, 41, 42, 69lesub2dd 11246 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)))
7142, 41resubcld 11057 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ∈ ℝ)
7242, 37resubcld 11057 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∈ ℝ)
7324ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑦 ∈ ℝ)
74 lelttr 10720 . . . . . . . . . 10 (((sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ∈ ℝ ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
7571, 72, 73, 74syl3anc 1368 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
7670, 75mpand 694 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦 → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
77 ltsub23 11109 . . . . . . . . 9 ((sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝐹𝑗) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦))
7842, 73, 37, 77syl3anc 1368 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦))
7918ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
803adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → 𝐹 Fn 𝑍)
81 fnfvelrn 6825 . . . . . . . . . . . 12 ((𝐹 Fn 𝑍𝑘𝑍) → (𝐹𝑘) ∈ ran 𝐹)
8280, 39, 81syl2an 598 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ran 𝐹)
83 suprub 11589 . . . . . . . . . . 11 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝐹𝑘) ∈ ran 𝐹) → (𝐹𝑘) ≤ sup(ran 𝐹, ℝ, < ))
8479, 82, 83syl2anc 587 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ≤ sup(ran 𝐹, ℝ, < ))
8541, 42, 84abssuble0d 14784 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) = (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)))
8685breq1d 5040 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦 ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
8776, 78, 863imtr4d 297 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → (abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
8887anassrs 471 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → (abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
8988ralrimdva 3154 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
9089reximdva 3233 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
9134, 90mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)
9291ralrimiva 3149 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)
937fvexi 6659 . . . 4 𝑍 ∈ V
94 fex 6966 . . . 4 ((𝐹:𝑍⟶ℝ ∧ 𝑍 ∈ V) → 𝐹 ∈ V)
951, 93, 94sylancl 589 . . 3 (𝜑𝐹 ∈ V)
96 eqidd 2799 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
9720recnd 10658 . . 3 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
981, 40sylan 583 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
9998recnd 10658 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1007, 4, 95, 96, 97, 99clim2c 14854 . 2 (𝜑 → (𝐹 ⇝ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
10192, 100mpbird 260 1 (𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  c0 4243   class class class wbr 5030  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  supcsup 8888  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cz 11969  cuz 12231  +crp 12377  ...cfz 12885  abscabs 14585  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837
This theorem is referenced by:  isumsup2  15193  climcnds  15198  itg1climres  24318  itg2monolem1  24354  itg2i1fseq  24359  itg2i1fseq2  24360  emcllem6  25586  lmdvg  31306  esumpcvgval  31447  meaiuninclem  43119
  Copyright terms: Public domain W3C validator