Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsup Structured version   Visualization version   GIF version

Theorem climsup 15017
 Description: A bounded monotonic sequence converges to the supremum of its range. Theorem 12-5.1 of [Gleason] p. 180. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
climsup.1 𝑍 = (ℤ𝑀)
climsup.2 (𝜑𝑀 ∈ ℤ)
climsup.3 (𝜑𝐹:𝑍⟶ℝ)
climsup.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
climsup.5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥)
Assertion
Ref Expression
climsup (𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
Distinct variable groups:   𝑥,𝑘,𝐹   𝜑,𝑘   𝑘,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥,𝑘)

Proof of Theorem climsup
Dummy variables 𝑗 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climsup.3 . . . . . . . . . 10 (𝜑𝐹:𝑍⟶ℝ)
21frnd 6501 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ ℝ)
31ffnd 6495 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑍)
4 climsup.2 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
5 uzid 12246 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ𝑀))
7 climsup.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
86, 7eleqtrrdi 2925 . . . . . . . . . . 11 (𝜑𝑀𝑍)
9 fnfvelrn 6830 . . . . . . . . . . 11 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
103, 8, 9syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1110ne0d 4273 . . . . . . . . 9 (𝜑 → ran 𝐹 ≠ ∅)
12 climsup.5 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥)
13 breq1 5045 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → (𝑦𝑥 ↔ (𝐹𝑘) ≤ 𝑥))
1413ralrn 6836 . . . . . . . . . . . 12 (𝐹 Fn 𝑍 → (∀𝑦 ∈ ran 𝐹 𝑦𝑥 ↔ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
1514rexbidv 3283 . . . . . . . . . . 11 (𝐹 Fn 𝑍 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
163, 15syl 17 . . . . . . . . . 10 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
1712, 16mpbird 260 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥)
182, 11, 173jca 1125 . . . . . . . 8 (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
19 suprcl 11588 . . . . . . . 8 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
2018, 19syl 17 . . . . . . 7 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
21 ltsubrp 12413 . . . . . . 7 ((sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ))
2220, 21sylan 583 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ))
2318adantr 484 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
24 rpre 12385 . . . . . . . 8 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
25 resubcl 10939 . . . . . . . 8 ((sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ)
2620, 24, 25syl2an 598 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ)
27 suprlub 11592 . . . . . . 7 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘))
2823, 26, 27syl2anc 587 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘))
2922, 28mpbid 235 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘)
30 breq2 5046 . . . . . . . 8 (𝑘 = (𝐹𝑗) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗)))
3130rexrn 6835 . . . . . . 7 (𝐹 Fn 𝑍 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗)))
323, 31syl 17 . . . . . 6 (𝜑 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗)))
3332biimpa 480 . . . . 5 ((𝜑 ∧ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘) → ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗))
3429, 33syldan 594 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗))
35 ffvelrn 6831 . . . . . . . . . . . 12 ((𝐹:𝑍⟶ℝ ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
361, 35sylan 583 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
3736ad2ant2r 746 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ ℝ)
381adantr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
397uztrn2 12250 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
40 ffvelrn 6831 . . . . . . . . . . 11 ((𝐹:𝑍⟶ℝ ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
4138, 39, 40syl2an 598 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ℝ)
4220ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
43 simprr 772 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
44 fzssuz 12943 . . . . . . . . . . . . . 14 (𝑗...𝑘) ⊆ (ℤ𝑗)
45 uzss 12253 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
4645, 7sseqtrrdi 3993 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ 𝑍)
4746, 7eleq2s 2932 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
4847ad2antrl 727 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (ℤ𝑗) ⊆ 𝑍)
4944, 48sstrid 3953 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...𝑘) ⊆ 𝑍)
50 ffvelrn 6831 . . . . . . . . . . . . . . . 16 ((𝐹:𝑍⟶ℝ ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
5150ralrimiva 3174 . . . . . . . . . . . . . . 15 (𝐹:𝑍⟶ℝ → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
521, 51syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
5352ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
54 ssralv 4008 . . . . . . . . . . . . 13 ((𝑗...𝑘) ⊆ 𝑍 → (∀𝑛𝑍 (𝐹𝑛) ∈ ℝ → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ))
5549, 53, 54sylc 65 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ)
5655r19.21bi 3198 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...𝑘)) → (𝐹𝑛) ∈ ℝ)
57 fzssuz 12943 . . . . . . . . . . . . . 14 (𝑗...(𝑘 − 1)) ⊆ (ℤ𝑗)
5857, 48sstrid 3953 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...(𝑘 − 1)) ⊆ 𝑍)
5958sselda 3942 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → 𝑛𝑍)
60 climsup.4 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
6160ralrimiva 3174 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
6261ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑘𝑍 (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
63 fveq2 6652 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
64 fvoveq1 7163 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
6563, 64breq12d 5055 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))))
6665rspccva 3597 . . . . . . . . . . . . 13 ((∀𝑘𝑍 (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ∧ 𝑛𝑍) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
6762, 66sylan 583 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛𝑍) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
6859, 67syldan 594 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
6943, 56, 68monoord 13396 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ≤ (𝐹𝑘))
7037, 41, 42, 69lesub2dd 11246 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)))
7142, 41resubcld 11057 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ∈ ℝ)
7242, 37resubcld 11057 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∈ ℝ)
7324ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑦 ∈ ℝ)
74 lelttr 10720 . . . . . . . . . 10 (((sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ∈ ℝ ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
7571, 72, 73, 74syl3anc 1368 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
7670, 75mpand 694 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦 → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
77 ltsub23 11109 . . . . . . . . 9 ((sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝐹𝑗) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦))
7842, 73, 37, 77syl3anc 1368 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑗)) < 𝑦))
7918ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥))
803adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → 𝐹 Fn 𝑍)
81 fnfvelrn 6830 . . . . . . . . . . . 12 ((𝐹 Fn 𝑍𝑘𝑍) → (𝐹𝑘) ∈ ran 𝐹)
8280, 39, 81syl2an 598 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ran 𝐹)
83 suprub 11589 . . . . . . . . . . 11 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦𝑥) ∧ (𝐹𝑘) ∈ ran 𝐹) → (𝐹𝑘) ≤ sup(ran 𝐹, ℝ, < ))
8479, 82, 83syl2anc 587 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ≤ sup(ran 𝐹, ℝ, < ))
8541, 42, 84abssuble0d 14783 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) = (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)))
8685breq1d 5052 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦 ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑘)) < 𝑦))
8776, 78, 863imtr4d 297 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → (abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
8887anassrs 471 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → (abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
8988ralrimdva 3179 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
9089reximdva 3260 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹𝑗) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
9134, 90mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)
9291ralrimiva 3174 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)
937fvexi 6666 . . . 4 𝑍 ∈ V
94 fex 6971 . . . 4 ((𝐹:𝑍⟶ℝ ∧ 𝑍 ∈ V) → 𝐹 ∈ V)
951, 93, 94sylancl 589 . . 3 (𝜑𝐹 ∈ V)
96 eqidd 2823 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
9720recnd 10658 . . 3 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
981, 40sylan 583 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
9998recnd 10658 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1007, 4, 95, 96, 97, 99clim2c 14853 . 2 (𝜑 → (𝐹 ⇝ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦))
10192, 100mpbird 260 1 (𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   ≠ wne 3011  ∀wral 3130  ∃wrex 3131  Vcvv 3469   ⊆ wss 3908  ∅c0 4265   class class class wbr 5042  ran crn 5533   Fn wfn 6329  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140  supcsup 8892  ℝcr 10525  1c1 10527   + caddc 10529   < clt 10664   ≤ cle 10665   − cmin 10859  ℤcz 11969  ℤ≥cuz 12231  ℝ+crp 12377  ...cfz 12885  abscabs 14584   ⇝ cli 14832 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836 This theorem is referenced by:  isumsup2  15192  climcnds  15197  itg1climres  24316  itg2monolem1  24352  itg2i1fseq  24357  itg2i1fseq2  24358  emcllem6  25584  lmdvg  31270  esumpcvgval  31411  meaiuninclem  43059
 Copyright terms: Public domain W3C validator