Step | Hyp | Ref
| Expression |
1 | | climsup.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
2 | 1 | frnd 6608 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
3 | 1 | ffnd 6601 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn 𝑍) |
4 | | climsup.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | | uzid 12597 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
7 | | climsup.1 |
. . . . . . . . . . . 12
⊢ 𝑍 =
(ℤ≥‘𝑀) |
8 | 6, 7 | eleqtrrdi 2850 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
9 | | fnfvelrn 6958 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍) → (𝐹‘𝑀) ∈ ran 𝐹) |
10 | 3, 8, 9 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑀) ∈ ran 𝐹) |
11 | 10 | ne0d 4269 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ≠ ∅) |
12 | | climsup.5 |
. . . . . . . . . 10
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥) |
13 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘𝑘) → (𝑦 ≤ 𝑥 ↔ (𝐹‘𝑘) ≤ 𝑥)) |
14 | 13 | ralrn 6964 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝑍 → (∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥)) |
15 | 14 | rexbidv 3226 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝑍 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥)) |
16 | 3, 15 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥)) |
17 | 12, 16 | mpbird 256 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) |
18 | 2, 11, 17 | 3jca 1127 |
. . . . . . . 8
⊢ (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) |
19 | | suprcl 11935 |
. . . . . . . 8
⊢ ((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) → sup(ran 𝐹, ℝ, < ) ∈
ℝ) |
20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝐹, ℝ, < ) ∈
ℝ) |
21 | | ltsubrp 12766 |
. . . . . . 7
⊢ ((sup(ran
𝐹, ℝ, < ) ∈
ℝ ∧ 𝑦 ∈
ℝ+) → (sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < )) |
22 | 20, 21 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (sup(ran
𝐹, ℝ, < ) −
𝑦) < sup(ran 𝐹, ℝ, <
)) |
23 | 18 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) |
24 | | rpre 12738 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
25 | | resubcl 11285 |
. . . . . . . 8
⊢ ((sup(ran
𝐹, ℝ, < ) ∈
ℝ ∧ 𝑦 ∈
ℝ) → (sup(ran 𝐹,
ℝ, < ) − 𝑦)
∈ ℝ) |
26 | 20, 24, 25 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (sup(ran
𝐹, ℝ, < ) −
𝑦) ∈
ℝ) |
27 | | suprlub 11939 |
. . . . . . 7
⊢ (((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (sup(ran 𝐹, ℝ, < ) − 𝑦) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘)) |
28 | 23, 26, 27 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((sup(ran
𝐹, ℝ, < ) −
𝑦) < sup(ran 𝐹, ℝ, < ) ↔
∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘)) |
29 | 22, 28 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘) |
30 | | breq2 5078 |
. . . . . . . 8
⊢ (𝑘 = (𝐹‘𝑗) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗))) |
31 | 30 | rexrn 6963 |
. . . . . . 7
⊢ (𝐹 Fn 𝑍 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗))) |
32 | 3, 31 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘 ↔ ∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗))) |
33 | 32 | biimpa 477 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑘 ∈ ran 𝐹(sup(ran 𝐹, ℝ, < ) − 𝑦) < 𝑘) → ∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗)) |
34 | 29, 33 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗)) |
35 | | ffvelrn 6959 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
36 | 1, 35 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
37 | 36 | ad2ant2r 744 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑗) ∈ ℝ) |
38 | 1 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐹:𝑍⟶ℝ) |
39 | 7 | uztrn2 12601 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
40 | | ffvelrn 6959 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
41 | 38, 39, 40 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ∈ ℝ) |
42 | 20 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → sup(ran 𝐹, ℝ, < ) ∈
ℝ) |
43 | | simprr 770 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → 𝑘 ∈ (ℤ≥‘𝑗)) |
44 | | fzssuz 13297 |
. . . . . . . . . . . . . 14
⊢ (𝑗...𝑘) ⊆ (ℤ≥‘𝑗) |
45 | | uzss 12605 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑗) ⊆
(ℤ≥‘𝑀)) |
46 | 45, 7 | sseqtrrdi 3972 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑗) ⊆ 𝑍) |
47 | 46, 7 | eleq2s 2857 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝑍 → (ℤ≥‘𝑗) ⊆ 𝑍) |
48 | 47 | ad2antrl 725 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) →
(ℤ≥‘𝑗) ⊆ 𝑍) |
49 | 44, 48 | sstrid 3932 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑗...𝑘) ⊆ 𝑍) |
50 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℝ) |
51 | 50 | ralrimiva 3103 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝑍⟶ℝ → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ) |
52 | 1, 51 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ) |
53 | 52 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ) |
54 | | ssralv 3987 |
. . . . . . . . . . . . 13
⊢ ((𝑗...𝑘) ⊆ 𝑍 → (∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ → ∀𝑛 ∈ (𝑗...𝑘)(𝐹‘𝑛) ∈ ℝ)) |
55 | 49, 53, 54 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∀𝑛 ∈ (𝑗...𝑘)(𝐹‘𝑛) ∈ ℝ) |
56 | 55 | r19.21bi 3134 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ (𝑗...𝑘)) → (𝐹‘𝑛) ∈ ℝ) |
57 | | fzssuz 13297 |
. . . . . . . . . . . . . 14
⊢ (𝑗...(𝑘 − 1)) ⊆
(ℤ≥‘𝑗) |
58 | 57, 48 | sstrid 3932 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑗...(𝑘 − 1)) ⊆ 𝑍) |
59 | 58 | sselda 3921 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → 𝑛 ∈ 𝑍) |
60 | | climsup.4 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
61 | 60 | ralrimiva 3103 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
62 | 61 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
63 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
64 | | fvoveq1 7298 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) |
65 | 63, 64 | breq12d 5087 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1)))) |
66 | 65 | rspccva 3560 |
. . . . . . . . . . . . 13
⊢
((∀𝑘 ∈
𝑍 (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1)) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1))) |
67 | 62, 66 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1))) |
68 | 59, 67 | syldan 591 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1))) |
69 | 43, 56, 68 | monoord 13753 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑗) ≤ (𝐹‘𝑘)) |
70 | 37, 41, 42, 69 | lesub2dd 11592 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗))) |
71 | 42, 41 | resubcld 11403 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) ∈ ℝ) |
72 | 42, 37 | resubcld 11403 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) ∈ ℝ) |
73 | 24 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → 𝑦 ∈ ℝ) |
74 | | lelttr 11065 |
. . . . . . . . . 10
⊢
(((sup(ran 𝐹,
ℝ, < ) − (𝐹‘𝑘)) ∈ ℝ ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) < 𝑦)) |
75 | 71, 72, 73, 74 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (((sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦) → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) < 𝑦)) |
76 | 70, 75 | mpand 692 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦 → (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) < 𝑦)) |
77 | | ltsub23 11455 |
. . . . . . . . 9
⊢ ((sup(ran
𝐹, ℝ, < ) ∈
ℝ ∧ 𝑦 ∈
ℝ ∧ (𝐹‘𝑗) ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦)) |
78 | 42, 73, 37, 77 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑗)) < 𝑦)) |
79 | 18 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥)) |
80 | 3 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐹 Fn 𝑍) |
81 | | fnfvelrn 6958 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ran 𝐹) |
82 | 80, 39, 81 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ∈ ran 𝐹) |
83 | | suprub 11936 |
. . . . . . . . . . 11
⊢ (((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) ∧ (𝐹‘𝑘) ∈ ran 𝐹) → (𝐹‘𝑘) ≤ sup(ran 𝐹, ℝ, < )) |
84 | 79, 82, 83 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ≤ sup(ran 𝐹, ℝ, < )) |
85 | 41, 42, 84 | abssuble0d 15144 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) = (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘))) |
86 | 85 | breq1d 5084 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦 ↔ (sup(ran 𝐹, ℝ, < ) − (𝐹‘𝑘)) < 𝑦)) |
87 | 76, 78, 86 | 3imtr4d 294 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) → (abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) |
88 | 87 | anassrs 468 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) → (abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) |
89 | 88 | ralrimdva 3106 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → ((sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) |
90 | 89 | reximdva 3203 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 (sup(ran 𝐹, ℝ, < ) − 𝑦) < (𝐹‘𝑗) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) |
91 | 34, 90 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦) |
92 | 91 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦) |
93 | 7 | fvexi 6788 |
. . . 4
⊢ 𝑍 ∈ V |
94 | | fex 7102 |
. . . 4
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑍 ∈ V) → 𝐹 ∈ V) |
95 | 1, 93, 94 | sylancl 586 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
96 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
97 | 20 | recnd 11003 |
. . 3
⊢ (𝜑 → sup(ran 𝐹, ℝ, < ) ∈
ℂ) |
98 | 1, 40 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
99 | 98 | recnd 11003 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
100 | 7, 4, 95, 96, 97, 99 | clim2c 15214 |
. 2
⊢ (𝜑 → (𝐹 ⇝ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑦 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − sup(ran 𝐹, ℝ, < ))) < 𝑦)) |
101 | 92, 100 | mpbird 256 |
1
⊢ (𝜑 → 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) |