MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsqz Structured version   Visualization version   GIF version

Theorem climsqz 14755
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climsqz.5 (𝜑𝐺𝑊)
climsqz.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climsqz.7 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
climsqz.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))
climsqz.9 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ 𝐴)
Assertion
Ref Expression
climsqz (𝜑𝐺𝐴)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem climsqz
Dummy variables 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . . . . 5 𝑍 = (ℤ𝑀)
2 climadd.2 . . . . . 6 (𝜑𝑀 ∈ ℤ)
32adantr 474 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 simpr 479 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5 eqidd 2826 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
6 climadd.4 . . . . . 6 (𝜑𝐹𝐴)
76adantr 474 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐹𝐴)
81, 3, 4, 5, 7climi2 14626 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
91uztrn2 11993 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
10 climsqz.6 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
11 climsqz.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
121, 2, 6, 10climrecl 14698 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
1312adantr 474 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
14 climsqz.8 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))
1510, 11, 13, 14lesub2dd 10976 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐴 − (𝐺𝑘)) ≤ (𝐴 − (𝐹𝑘)))
16 climsqz.9 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ 𝐴)
1711, 13, 16abssuble0d 14555 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) = (𝐴 − (𝐺𝑘)))
1810, 11, 13, 14, 16letrd 10520 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ 𝐴)
1910, 13, 18abssuble0d 14555 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) = (𝐴 − (𝐹𝑘)))
2015, 17, 193brtr4d 4907 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)))
2120adantlr 706 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)))
2211adantlr 706 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
2312ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝐴 ∈ ℝ)
2422, 23resubcld 10789 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐺𝑘) − 𝐴) ∈ ℝ)
2524recnd 10392 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐺𝑘) − 𝐴) ∈ ℂ)
2625abscld 14559 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ∈ ℝ)
2710adantlr 706 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
2827, 23resubcld 10789 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
2928recnd 10392 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
3029abscld 14559 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
31 rpre 12127 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
3231ad2antlr 718 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥 ∈ ℝ)
33 lelttr 10454 . . . . . . . . . 10 (((abs‘((𝐺𝑘) − 𝐴)) ∈ ℝ ∧ (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3426, 30, 32, 33syl3anc 1494 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (((abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3521, 34mpand 686 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
369, 35sylan2 586 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3736anassrs 461 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3837ralimdva 3171 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3938reximdva 3225 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
408, 39mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥)
4140ralrimiva 3175 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥)
42 climsqz.5 . . 3 (𝜑𝐺𝑊)
43 eqidd 2826 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
4412recnd 10392 . . 3 (𝜑𝐴 ∈ ℂ)
4511recnd 10392 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
461, 2, 42, 43, 44, 45clim2c 14620 . 2 (𝜑 → (𝐺𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
4741, 46mpbird 249 1 (𝜑𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wral 3117  wrex 3118   class class class wbr 4875  cfv 6127  (class class class)co 6910  cr 10258   < clt 10398  cle 10399  cmin 10592  cz 11711  cuz 11975  +crp 12119  abscabs 14358  cli 14599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-pm 8130  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-fl 12895  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-rlim 14604
This theorem is referenced by:  supcvg  14969  mbfi1fseqlem6  23893  sinccvglem  32106  hashnzfzclim  39360
  Copyright terms: Public domain W3C validator