Step | Hyp | Ref
| Expression |
1 | | climinf.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
2 | 1 | frnd 6553 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
3 | 1 | ffnd 6546 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn 𝑍) |
4 | | climinf.4 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | | uzid 12453 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
7 | | climinf.3 |
. . . . . . . . . . . . . 14
⊢ 𝑍 =
(ℤ≥‘𝑀) |
8 | 6, 7 | eleqtrrdi 2849 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
9 | | fnfvelrn 6901 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍) → (𝐹‘𝑀) ∈ ran 𝐹) |
10 | 3, 8, 9 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹‘𝑀) ∈ ran 𝐹) |
11 | 10 | ne0d 4250 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝐹 ≠ ∅) |
12 | | climinf.7 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
13 | | breq2 5057 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝐹‘𝑘) → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ (𝐹‘𝑘))) |
14 | 13 | ralrn 6907 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝑍 → (∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ↔ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘))) |
15 | 14 | rexbidv 3216 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn 𝑍 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘))) |
16 | 3, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘))) |
17 | 12, 16 | mpbird 260 |
. . . . . . . . . . 11
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
18 | 2, 11, 17 | 3jca 1130 |
. . . . . . . . . 10
⊢ (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦)) |
19 | 18 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦)) |
20 | | infrecl 11814 |
. . . . . . . . 9
⊢ ((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) → inf(ran 𝐹, ℝ, < ) ∈
ℝ) |
21 | 19, 20 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → inf(ran
𝐹, ℝ, < ) ∈
ℝ) |
22 | | simpr 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈
ℝ+) |
23 | 21, 22 | ltaddrpd 12661 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → inf(ran
𝐹, ℝ, < ) <
(inf(ran 𝐹, ℝ, < )
+ 𝑦)) |
24 | | rpre 12594 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
25 | 24 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈
ℝ) |
26 | 21, 25 | readdcld 10862 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (inf(ran
𝐹, ℝ, < ) + 𝑦) ∈
ℝ) |
27 | | infrglb 42806 |
. . . . . . . 8
⊢ (((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) ∧ (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ) → (inf(ran 𝐹, ℝ, < ) < (inf(ran
𝐹, ℝ, < ) + 𝑦) ↔ ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦))) |
28 | 19, 26, 27 | syl2anc 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (inf(ran
𝐹, ℝ, < ) <
(inf(ran 𝐹, ℝ, < )
+ 𝑦) ↔ ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦))) |
29 | 23, 28 | mpbid 235 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦)) |
30 | 2 | sselda 3901 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝐹) → 𝑘 ∈ ℝ) |
31 | 30 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑘 ∈ ℝ) |
32 | 21 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ∈
ℝ) |
33 | 24 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
34 | 32, 33 | readdcld 10862 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ) |
35 | 31, 34, 33 | ltsub1d 11441 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ (𝑘 − 𝑦) < ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦))) |
36 | 2, 11, 17, 20 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (𝜑 → inf(ran 𝐹, ℝ, < ) ∈
ℝ) |
37 | 36 | recnd 10861 |
. . . . . . . . . . . 12
⊢ (𝜑 → inf(ran 𝐹, ℝ, < ) ∈
ℂ) |
38 | 37 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ∈
ℂ) |
39 | 33 | recnd 10861 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑦 ∈ ℂ) |
40 | 38, 39 | pncand 11190 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦) = inf(ran 𝐹, ℝ, < )) |
41 | 40 | breq2d 5065 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → ((𝑘 − 𝑦) < ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦) ↔ (𝑘 − 𝑦) < inf(ran 𝐹, ℝ, < ))) |
42 | 35, 41 | bitrd 282 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ (𝑘 − 𝑦) < inf(ran 𝐹, ℝ, < ))) |
43 | 42 | biimpd 232 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) → (𝑘 − 𝑦) < inf(ran 𝐹, ℝ, < ))) |
44 | 43 | reximdva 3193 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
(∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) → ∃𝑘 ∈ ran 𝐹(𝑘 − 𝑦) < inf(ran 𝐹, ℝ, < ))) |
45 | 29, 44 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑘 ∈ ran 𝐹(𝑘 − 𝑦) < inf(ran 𝐹, ℝ, < )) |
46 | | oveq1 7220 |
. . . . . . . . 9
⊢ (𝑘 = (𝐹‘𝑗) → (𝑘 − 𝑦) = ((𝐹‘𝑗) − 𝑦)) |
47 | 46 | breq1d 5063 |
. . . . . . . 8
⊢ (𝑘 = (𝐹‘𝑗) → ((𝑘 − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹‘𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ))) |
48 | 47 | rexrn 6906 |
. . . . . . 7
⊢ (𝐹 Fn 𝑍 → (∃𝑘 ∈ ran 𝐹(𝑘 − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ∃𝑗 ∈ 𝑍 ((𝐹‘𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ))) |
49 | 3, 48 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∃𝑘 ∈ ran 𝐹(𝑘 − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ∃𝑗 ∈ 𝑍 ((𝐹‘𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ))) |
50 | 49 | biimpa 480 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑘 ∈ ran 𝐹(𝑘 − 𝑦) < inf(ran 𝐹, ℝ, < )) → ∃𝑗 ∈ 𝑍 ((𝐹‘𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )) |
51 | 45, 50 | syldan 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ((𝐹‘𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )) |
52 | 1 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐹:𝑍⟶ℝ) |
53 | 7 | uztrn2 12457 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
54 | | ffvelrn 6902 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
55 | 52, 53, 54 | syl2an 599 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ∈ ℝ) |
56 | | simpl 486 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑗 ∈ 𝑍) |
57 | | ffvelrn 6902 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
58 | 52, 56, 57 | syl2an 599 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑗) ∈ ℝ) |
59 | 36 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → inf(ran 𝐹, ℝ, < ) ∈
ℝ) |
60 | | simprr 773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → 𝑘 ∈ (ℤ≥‘𝑗)) |
61 | | fzssuz 13153 |
. . . . . . . . . . . . . 14
⊢ (𝑗...𝑘) ⊆ (ℤ≥‘𝑗) |
62 | | uzss 12461 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑗) ⊆
(ℤ≥‘𝑀)) |
63 | 62, 7 | sseqtrrdi 3952 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑗) ⊆ 𝑍) |
64 | 63, 7 | eleq2s 2856 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝑍 → (ℤ≥‘𝑗) ⊆ 𝑍) |
65 | 64 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) →
(ℤ≥‘𝑗) ⊆ 𝑍) |
66 | 61, 65 | sstrid 3912 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑗...𝑘) ⊆ 𝑍) |
67 | | ffvelrn 6902 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℝ) |
68 | 67 | ralrimiva 3105 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝑍⟶ℝ → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ) |
69 | 1, 68 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ) |
70 | 69 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ) |
71 | | ssralv 3967 |
. . . . . . . . . . . . 13
⊢ ((𝑗...𝑘) ⊆ 𝑍 → (∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℝ → ∀𝑛 ∈ (𝑗...𝑘)(𝐹‘𝑛) ∈ ℝ)) |
72 | 66, 70, 71 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∀𝑛 ∈ (𝑗...𝑘)(𝐹‘𝑛) ∈ ℝ) |
73 | 72 | r19.21bi 3130 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ (𝑗...𝑘)) → (𝐹‘𝑛) ∈ ℝ) |
74 | | fzssuz 13153 |
. . . . . . . . . . . . . 14
⊢ (𝑗...(𝑘 − 1)) ⊆
(ℤ≥‘𝑗) |
75 | 74, 65 | sstrid 3912 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝑗...(𝑘 − 1)) ⊆ 𝑍) |
76 | 75 | sselda 3901 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → 𝑛 ∈ 𝑍) |
77 | | climinf.6 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
78 | 77 | ralrimiva 3105 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
79 | 78 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∀𝑘 ∈ 𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
80 | | fvoveq1 7236 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) |
81 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
82 | 80, 81 | breq12d 5066 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛))) |
83 | 82 | rspccva 3536 |
. . . . . . . . . . . . 13
⊢
((∀𝑘 ∈
𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ∧ 𝑛 ∈ 𝑍) → (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
84 | 79, 83 | sylan 583 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ 𝑍) → (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
85 | 76, 84 | syldan 594 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
86 | 60, 73, 85 | monoord2 13607 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ≤ (𝐹‘𝑗)) |
87 | 55, 58, 59, 86 | lesub1dd 11448 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹‘𝑗) − inf(ran 𝐹, ℝ, < ))) |
88 | 55, 59 | resubcld 11260 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < )) ∈
ℝ) |
89 | 58, 59 | resubcld 11260 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗) − inf(ran 𝐹, ℝ, < )) ∈
ℝ) |
90 | 24 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → 𝑦 ∈ ℝ) |
91 | | lelttr 10923 |
. . . . . . . . . 10
⊢ ((((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < )) ∈ ℝ ∧
((𝐹‘𝑗) − inf(ran 𝐹, ℝ, < )) ∈
ℝ ∧ 𝑦 ∈
ℝ) → ((((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹‘𝑗) − inf(ran 𝐹, ℝ, < )) ∧ ((𝐹‘𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦) → ((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦)) |
92 | 88, 89, 90, 91 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹‘𝑗) − inf(ran 𝐹, ℝ, < )) ∧ ((𝐹‘𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦) → ((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦)) |
93 | 87, 92 | mpand 695 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (((𝐹‘𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦 → ((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦)) |
94 | | ltsub23 11312 |
. . . . . . . . 9
⊢ (((𝐹‘𝑗) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ inf(ran 𝐹, ℝ, < ) ∈
ℝ) → (((𝐹‘𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹‘𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦)) |
95 | 58, 90, 59, 94 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (((𝐹‘𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹‘𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦)) |
96 | 2 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ran 𝐹 ⊆ ℝ) |
97 | 3 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐹 Fn 𝑍) |
98 | | fnfvelrn 6901 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ran 𝐹) |
99 | 97, 53, 98 | syl2an 599 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ∈ ran 𝐹) |
100 | 96, 99 | sseldd 3902 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ∈ ℝ) |
101 | 17 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
102 | | infrelb 11817 |
. . . . . . . . . . 11
⊢ ((ran
𝐹 ⊆ ℝ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ∧ (𝐹‘𝑘) ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹‘𝑘)) |
103 | 96, 101, 99, 102 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹‘𝑘)) |
104 | 59, 100, 103 | abssubge0d 14995 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (abs‘((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < ))) = ((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < ))) |
105 | 104 | breq1d 5063 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦 ↔ ((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦)) |
106 | 93, 95, 105 | 3imtr4d 297 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (((𝐹‘𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → (abs‘((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)) |
107 | 106 | anassrs 471 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → (abs‘((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)) |
108 | 107 | ralrimdva 3110 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (((𝐹‘𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)) |
109 | 108 | reximdva 3193 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ((𝐹‘𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)) |
110 | 51, 109 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦) |
111 | 110 | ralrimiva 3105 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦) |
112 | 7 | fvexi 6731 |
. . . 4
⊢ 𝑍 ∈ V |
113 | | fex 7042 |
. . . 4
⊢ ((𝐹:𝑍⟶ℝ ∧ 𝑍 ∈ V) → 𝐹 ∈ V) |
114 | 1, 112, 113 | sylancl 589 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
115 | | eqidd 2738 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
116 | 1 | ffvelrnda 6904 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
117 | 116 | recnd 10861 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
118 | 7, 4, 114, 115, 37, 117 | clim2c 15066 |
. 2
⊢ (𝜑 → (𝐹 ⇝ inf(ran 𝐹, ℝ, < ) ↔ ∀𝑦 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)) |
119 | 111, 118 | mpbird 260 |
1
⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |