Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf Structured version   Visualization version   GIF version

Theorem climinf 45625
Description: A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.)
Hypotheses
Ref Expression
climinf.3 𝑍 = (ℤ𝑀)
climinf.4 (𝜑𝑀 ∈ ℤ)
climinf.5 (𝜑𝐹:𝑍⟶ℝ)
climinf.6 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf.7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
Assertion
Ref Expression
climinf (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
Distinct variable groups:   𝜑,𝑘   𝑥,𝑘,𝐹   𝑘,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥,𝑘)

Proof of Theorem climinf
Dummy variables 𝑗 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climinf.5 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ)
21frnd 6655 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ⊆ ℝ)
31ffnd 6648 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝑍)
4 climinf.4 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
5 uzid 12739 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
64, 5syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ𝑀))
7 climinf.3 . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
86, 7eleqtrrdi 2840 . . . . . . . . . . . . 13 (𝜑𝑀𝑍)
9 fnfvelrn 7008 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
103, 8, 9syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1110ne0d 4290 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ≠ ∅)
12 climinf.7 . . . . . . . . . . . 12 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
13 breq2 5093 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑘) → (𝑥𝑦𝑥 ≤ (𝐹𝑘)))
1413ralrn 7016 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑍 → (∀𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)))
1514rexbidv 3154 . . . . . . . . . . . . 13 (𝐹 Fn 𝑍 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)))
163, 15syl 17 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)))
1712, 16mpbird 257 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
182, 11, 173jca 1128 . . . . . . . . . 10 (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
1918adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
20 infrecl 12096 . . . . . . . . 9 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
2119, 20syl 17 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
22 simpr 484 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
2321, 22ltaddrpd 12959 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → inf(ran 𝐹, ℝ, < ) < (inf(ran 𝐹, ℝ, < ) + 𝑦))
24 rpre 12891 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
2524adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
2621, 25readdcld 11133 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ)
27 infrglb 45609 . . . . . . . 8 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) ∧ (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ) → (inf(ran 𝐹, ℝ, < ) < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦)))
2819, 26, 27syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (inf(ran 𝐹, ℝ, < ) < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦)))
2923, 28mpbid 232 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦))
302sselda 3932 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ran 𝐹) → 𝑘 ∈ ℝ)
3130adantlr 715 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑘 ∈ ℝ)
3221adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
3324ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑦 ∈ ℝ)
3432, 33readdcld 11133 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ)
3531, 34, 33ltsub1d 11718 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ (𝑘𝑦) < ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦)))
362, 11, 17, 20syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
3736recnd 11132 . . . . . . . . . . . 12 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℂ)
3837ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ∈ ℂ)
3933recnd 11132 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑦 ∈ ℂ)
4038, 39pncand 11465 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦) = inf(ran 𝐹, ℝ, < ))
4140breq2d 5101 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → ((𝑘𝑦) < ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦) ↔ (𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4235, 41bitrd 279 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ (𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4342biimpd 229 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) → (𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4443reximdva 3143 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) → ∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4529, 44mpd 15 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < ))
46 oveq1 7348 . . . . . . . . 9 (𝑘 = (𝐹𝑗) → (𝑘𝑦) = ((𝐹𝑗) − 𝑦))
4746breq1d 5099 . . . . . . . 8 (𝑘 = (𝐹𝑗) → ((𝑘𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )))
4847rexrn 7015 . . . . . . 7 (𝐹 Fn 𝑍 → (∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )))
493, 48syl 17 . . . . . 6 (𝜑 → (∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )))
5049biimpa 476 . . . . 5 ((𝜑 ∧ ∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < )) → ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ))
5145, 50syldan 591 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ))
521adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
537uztrn2 12743 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
54 ffvelcdm 7009 . . . . . . . . . . 11 ((𝐹:𝑍⟶ℝ ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
5552, 53, 54syl2an 596 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ℝ)
56 simpl 482 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑗𝑍)
57 ffvelcdm 7009 . . . . . . . . . . 11 ((𝐹:𝑍⟶ℝ ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
5852, 56, 57syl2an 596 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ ℝ)
5936ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
60 simprr 772 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
61 fzssuz 13457 . . . . . . . . . . . . . 14 (𝑗...𝑘) ⊆ (ℤ𝑗)
62 uzss 12747 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
6362, 7sseqtrrdi 3974 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ 𝑍)
6463, 7eleq2s 2847 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
6564ad2antrl 728 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (ℤ𝑗) ⊆ 𝑍)
6661, 65sstrid 3944 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...𝑘) ⊆ 𝑍)
67 ffvelcdm 7009 . . . . . . . . . . . . . . . 16 ((𝐹:𝑍⟶ℝ ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
6867ralrimiva 3122 . . . . . . . . . . . . . . 15 (𝐹:𝑍⟶ℝ → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
691, 68syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
7069ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
71 ssralv 4001 . . . . . . . . . . . . 13 ((𝑗...𝑘) ⊆ 𝑍 → (∀𝑛𝑍 (𝐹𝑛) ∈ ℝ → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ))
7266, 70, 71sylc 65 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ)
7372r19.21bi 3222 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...𝑘)) → (𝐹𝑛) ∈ ℝ)
74 fzssuz 13457 . . . . . . . . . . . . . 14 (𝑗...(𝑘 − 1)) ⊆ (ℤ𝑗)
7574, 65sstrid 3944 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...(𝑘 − 1)) ⊆ 𝑍)
7675sselda 3932 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → 𝑛𝑍)
77 climinf.6 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7877ralrimiva 3122 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7978ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑘𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
80 fvoveq1 7364 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
81 fveq2 6817 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8280, 81breq12d 5102 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
8382rspccva 3574 . . . . . . . . . . . . 13 ((∀𝑘𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ 𝑛𝑍) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
8479, 83sylan 580 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛𝑍) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
8576, 84syldan 591 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
8660, 73, 85monoord2 13932 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ≤ (𝐹𝑗))
8755, 58, 59, 86lesub1dd 11725 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )))
8855, 59resubcld 11537 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
8958, 59resubcld 11537 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
9024ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑦 ∈ ℝ)
91 lelttr 11195 . . . . . . . . . 10 ((((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ∈ ℝ ∧ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∧ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
9288, 89, 90, 91syl3anc 1373 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∧ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
9387, 92mpand 695 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦 → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
94 ltsub23 11589 . . . . . . . . 9 (((𝐹𝑗) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦))
9558, 90, 59, 94syl3anc 1373 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦))
962ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ran 𝐹 ⊆ ℝ)
973adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → 𝐹 Fn 𝑍)
98 fnfvelrn 7008 . . . . . . . . . . . 12 ((𝐹 Fn 𝑍𝑘𝑍) → (𝐹𝑘) ∈ ran 𝐹)
9997, 53, 98syl2an 596 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ran 𝐹)
10096, 99sseldd 3933 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ℝ)
10117ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
102 infrelb 12099 . . . . . . . . . . 11 ((ran 𝐹 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦 ∧ (𝐹𝑘) ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑘))
10396, 101, 99, 102syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑘))
10459, 100, 103abssubge0d 15333 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) = ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )))
105104breq1d 5099 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦 ↔ ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
10693, 95, 1053imtr4d 294 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → (abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
107106anassrs 467 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → (abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
108107ralrimdva 3130 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
109108reximdva 3143 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
11051, 109mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)
111110ralrimiva 3122 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)
1127fvexi 6831 . . . 4 𝑍 ∈ V
113 fex 7155 . . . 4 ((𝐹:𝑍⟶ℝ ∧ 𝑍 ∈ V) → 𝐹 ∈ V)
1141, 112, 113sylancl 586 . . 3 (𝜑𝐹 ∈ V)
115 eqidd 2731 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
1161ffvelcdmda 7012 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
117116recnd 11132 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1187, 4, 114, 115, 37, 117clim2c 15404 . 2 (𝜑 → (𝐹 ⇝ inf(ran 𝐹, ℝ, < ) ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
119111, 118mpbird 257 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  Vcvv 3434  wss 3900  c0 4281   class class class wbr 5089  ran crn 5615   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  infcinf 9320  cc 10996  cr 10997  1c1 10999   + caddc 11001   < clt 11138  cle 11139  cmin 11336  cz 12460  cuz 12724  +crp 12882  ...cfz 13399  abscabs 15133  cli 15383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-fz 13400  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387
This theorem is referenced by:  climinff  45630  climinf2lem  45723  supcnvlimsup  45757  stirlinglem13  46103
  Copyright terms: Public domain W3C validator