Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf Structured version   Visualization version   GIF version

Theorem climinf 45588
Description: A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.)
Hypotheses
Ref Expression
climinf.3 𝑍 = (ℤ𝑀)
climinf.4 (𝜑𝑀 ∈ ℤ)
climinf.5 (𝜑𝐹:𝑍⟶ℝ)
climinf.6 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf.7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
Assertion
Ref Expression
climinf (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
Distinct variable groups:   𝜑,𝑘   𝑥,𝑘,𝐹   𝑘,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥,𝑘)

Proof of Theorem climinf
Dummy variables 𝑗 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climinf.5 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ)
21frnd 6664 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ⊆ ℝ)
31ffnd 6657 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝑍)
4 climinf.4 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
5 uzid 12768 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
64, 5syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ𝑀))
7 climinf.3 . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
86, 7eleqtrrdi 2839 . . . . . . . . . . . . 13 (𝜑𝑀𝑍)
9 fnfvelrn 7018 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
103, 8, 9syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1110ne0d 4295 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ≠ ∅)
12 climinf.7 . . . . . . . . . . . 12 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
13 breq2 5099 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑘) → (𝑥𝑦𝑥 ≤ (𝐹𝑘)))
1413ralrn 7026 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑍 → (∀𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)))
1514rexbidv 3153 . . . . . . . . . . . . 13 (𝐹 Fn 𝑍 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)))
163, 15syl 17 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)))
1712, 16mpbird 257 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
182, 11, 173jca 1128 . . . . . . . . . 10 (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
1918adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
20 infrecl 12125 . . . . . . . . 9 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
2119, 20syl 17 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
22 simpr 484 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
2321, 22ltaddrpd 12988 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → inf(ran 𝐹, ℝ, < ) < (inf(ran 𝐹, ℝ, < ) + 𝑦))
24 rpre 12920 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
2524adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
2621, 25readdcld 11163 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ)
27 infrglb 45572 . . . . . . . 8 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) ∧ (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ) → (inf(ran 𝐹, ℝ, < ) < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦)))
2819, 26, 27syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (inf(ran 𝐹, ℝ, < ) < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦)))
2923, 28mpbid 232 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦))
302sselda 3937 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ran 𝐹) → 𝑘 ∈ ℝ)
3130adantlr 715 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑘 ∈ ℝ)
3221adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
3324ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑦 ∈ ℝ)
3432, 33readdcld 11163 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ)
3531, 34, 33ltsub1d 11747 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ (𝑘𝑦) < ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦)))
362, 11, 17, 20syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
3736recnd 11162 . . . . . . . . . . . 12 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℂ)
3837ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ∈ ℂ)
3933recnd 11162 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑦 ∈ ℂ)
4038, 39pncand 11494 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦) = inf(ran 𝐹, ℝ, < ))
4140breq2d 5107 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → ((𝑘𝑦) < ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦) ↔ (𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4235, 41bitrd 279 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ (𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4342biimpd 229 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) → (𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4443reximdva 3142 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) → ∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4529, 44mpd 15 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < ))
46 oveq1 7360 . . . . . . . . 9 (𝑘 = (𝐹𝑗) → (𝑘𝑦) = ((𝐹𝑗) − 𝑦))
4746breq1d 5105 . . . . . . . 8 (𝑘 = (𝐹𝑗) → ((𝑘𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )))
4847rexrn 7025 . . . . . . 7 (𝐹 Fn 𝑍 → (∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )))
493, 48syl 17 . . . . . 6 (𝜑 → (∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )))
5049biimpa 476 . . . . 5 ((𝜑 ∧ ∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < )) → ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ))
5145, 50syldan 591 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ))
521adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
537uztrn2 12772 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
54 ffvelcdm 7019 . . . . . . . . . . 11 ((𝐹:𝑍⟶ℝ ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
5552, 53, 54syl2an 596 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ℝ)
56 simpl 482 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑗𝑍)
57 ffvelcdm 7019 . . . . . . . . . . 11 ((𝐹:𝑍⟶ℝ ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
5852, 56, 57syl2an 596 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ ℝ)
5936ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
60 simprr 772 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
61 fzssuz 13486 . . . . . . . . . . . . . 14 (𝑗...𝑘) ⊆ (ℤ𝑗)
62 uzss 12776 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
6362, 7sseqtrrdi 3979 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ 𝑍)
6463, 7eleq2s 2846 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
6564ad2antrl 728 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (ℤ𝑗) ⊆ 𝑍)
6661, 65sstrid 3949 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...𝑘) ⊆ 𝑍)
67 ffvelcdm 7019 . . . . . . . . . . . . . . . 16 ((𝐹:𝑍⟶ℝ ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
6867ralrimiva 3121 . . . . . . . . . . . . . . 15 (𝐹:𝑍⟶ℝ → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
691, 68syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
7069ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
71 ssralv 4006 . . . . . . . . . . . . 13 ((𝑗...𝑘) ⊆ 𝑍 → (∀𝑛𝑍 (𝐹𝑛) ∈ ℝ → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ))
7266, 70, 71sylc 65 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ)
7372r19.21bi 3221 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...𝑘)) → (𝐹𝑛) ∈ ℝ)
74 fzssuz 13486 . . . . . . . . . . . . . 14 (𝑗...(𝑘 − 1)) ⊆ (ℤ𝑗)
7574, 65sstrid 3949 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...(𝑘 − 1)) ⊆ 𝑍)
7675sselda 3937 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → 𝑛𝑍)
77 climinf.6 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7877ralrimiva 3121 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7978ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑘𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
80 fvoveq1 7376 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
81 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8280, 81breq12d 5108 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
8382rspccva 3578 . . . . . . . . . . . . 13 ((∀𝑘𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ 𝑛𝑍) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
8479, 83sylan 580 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛𝑍) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
8576, 84syldan 591 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
8660, 73, 85monoord2 13958 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ≤ (𝐹𝑗))
8755, 58, 59, 86lesub1dd 11754 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )))
8855, 59resubcld 11566 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
8958, 59resubcld 11566 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
9024ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑦 ∈ ℝ)
91 lelttr 11224 . . . . . . . . . 10 ((((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ∈ ℝ ∧ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∧ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
9288, 89, 90, 91syl3anc 1373 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∧ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
9387, 92mpand 695 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦 → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
94 ltsub23 11618 . . . . . . . . 9 (((𝐹𝑗) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦))
9558, 90, 59, 94syl3anc 1373 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦))
962ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ran 𝐹 ⊆ ℝ)
973adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → 𝐹 Fn 𝑍)
98 fnfvelrn 7018 . . . . . . . . . . . 12 ((𝐹 Fn 𝑍𝑘𝑍) → (𝐹𝑘) ∈ ran 𝐹)
9997, 53, 98syl2an 596 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ran 𝐹)
10096, 99sseldd 3938 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ℝ)
10117ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
102 infrelb 12128 . . . . . . . . . . 11 ((ran 𝐹 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦 ∧ (𝐹𝑘) ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑘))
10396, 101, 99, 102syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑘))
10459, 100, 103abssubge0d 15359 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) = ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )))
105104breq1d 5105 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦 ↔ ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
10693, 95, 1053imtr4d 294 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → (abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
107106anassrs 467 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → (abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
108107ralrimdva 3129 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
109108reximdva 3142 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
11051, 109mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)
111110ralrimiva 3121 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)
1127fvexi 6840 . . . 4 𝑍 ∈ V
113 fex 7166 . . . 4 ((𝐹:𝑍⟶ℝ ∧ 𝑍 ∈ V) → 𝐹 ∈ V)
1141, 112, 113sylancl 586 . . 3 (𝜑𝐹 ∈ V)
115 eqidd 2730 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
1161ffvelcdmda 7022 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
117116recnd 11162 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1187, 4, 114, 115, 37, 117clim2c 15430 . 2 (𝜑 → (𝐹 ⇝ inf(ran 𝐹, ℝ, < ) ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
119111, 118mpbird 257 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  wss 3905  c0 4286   class class class wbr 5095  ran crn 5624   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  infcinf 9350  cc 11026  cr 11027  1c1 11029   + caddc 11031   < clt 11168  cle 11169  cmin 11365  cz 12489  cuz 12753  +crp 12911  ...cfz 13428  abscabs 15159  cli 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413
This theorem is referenced by:  climinff  45593  climinf2lem  45688  supcnvlimsup  45722  stirlinglem13  46068
  Copyright terms: Public domain W3C validator