Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf Structured version   Visualization version   GIF version

Theorem climinf 45527
Description: A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.)
Hypotheses
Ref Expression
climinf.3 𝑍 = (ℤ𝑀)
climinf.4 (𝜑𝑀 ∈ ℤ)
climinf.5 (𝜑𝐹:𝑍⟶ℝ)
climinf.6 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf.7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
Assertion
Ref Expression
climinf (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
Distinct variable groups:   𝜑,𝑘   𝑥,𝑘,𝐹   𝑘,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥,𝑘)

Proof of Theorem climinf
Dummy variables 𝑗 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climinf.5 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ)
21frnd 6755 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ⊆ ℝ)
31ffnd 6748 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝑍)
4 climinf.4 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
5 uzid 12918 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
64, 5syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ𝑀))
7 climinf.3 . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
86, 7eleqtrrdi 2855 . . . . . . . . . . . . 13 (𝜑𝑀𝑍)
9 fnfvelrn 7114 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
103, 8, 9syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1110ne0d 4365 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ≠ ∅)
12 climinf.7 . . . . . . . . . . . 12 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
13 breq2 5170 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑘) → (𝑥𝑦𝑥 ≤ (𝐹𝑘)))
1413ralrn 7122 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑍 → (∀𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)))
1514rexbidv 3185 . . . . . . . . . . . . 13 (𝐹 Fn 𝑍 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)))
163, 15syl 17 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)))
1712, 16mpbird 257 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
182, 11, 173jca 1128 . . . . . . . . . 10 (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
1918adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
20 infrecl 12277 . . . . . . . . 9 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
2119, 20syl 17 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
22 simpr 484 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
2321, 22ltaddrpd 13132 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → inf(ran 𝐹, ℝ, < ) < (inf(ran 𝐹, ℝ, < ) + 𝑦))
24 rpre 13065 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
2524adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
2621, 25readdcld 11319 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ)
27 infrglb 45511 . . . . . . . 8 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) ∧ (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ) → (inf(ran 𝐹, ℝ, < ) < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦)))
2819, 26, 27syl2anc 583 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (inf(ran 𝐹, ℝ, < ) < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦)))
2923, 28mpbid 232 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦))
302sselda 4008 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ran 𝐹) → 𝑘 ∈ ℝ)
3130adantlr 714 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑘 ∈ ℝ)
3221adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
3324ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑦 ∈ ℝ)
3432, 33readdcld 11319 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ)
3531, 34, 33ltsub1d 11899 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ (𝑘𝑦) < ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦)))
362, 11, 17, 20syl3anc 1371 . . . . . . . . . . . . 13 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
3736recnd 11318 . . . . . . . . . . . 12 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℂ)
3837ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ∈ ℂ)
3933recnd 11318 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑦 ∈ ℂ)
4038, 39pncand 11648 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦) = inf(ran 𝐹, ℝ, < ))
4140breq2d 5178 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → ((𝑘𝑦) < ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦) ↔ (𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4235, 41bitrd 279 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ (𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4342biimpd 229 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) → (𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4443reximdva 3174 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) → ∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4529, 44mpd 15 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < ))
46 oveq1 7455 . . . . . . . . 9 (𝑘 = (𝐹𝑗) → (𝑘𝑦) = ((𝐹𝑗) − 𝑦))
4746breq1d 5176 . . . . . . . 8 (𝑘 = (𝐹𝑗) → ((𝑘𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )))
4847rexrn 7121 . . . . . . 7 (𝐹 Fn 𝑍 → (∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )))
493, 48syl 17 . . . . . 6 (𝜑 → (∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )))
5049biimpa 476 . . . . 5 ((𝜑 ∧ ∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < )) → ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ))
5145, 50syldan 590 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ))
521adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
537uztrn2 12922 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
54 ffvelcdm 7115 . . . . . . . . . . 11 ((𝐹:𝑍⟶ℝ ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
5552, 53, 54syl2an 595 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ℝ)
56 simpl 482 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑗𝑍)
57 ffvelcdm 7115 . . . . . . . . . . 11 ((𝐹:𝑍⟶ℝ ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
5852, 56, 57syl2an 595 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ ℝ)
5936ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
60 simprr 772 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
61 fzssuz 13625 . . . . . . . . . . . . . 14 (𝑗...𝑘) ⊆ (ℤ𝑗)
62 uzss 12926 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
6362, 7sseqtrrdi 4060 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ 𝑍)
6463, 7eleq2s 2862 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
6564ad2antrl 727 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (ℤ𝑗) ⊆ 𝑍)
6661, 65sstrid 4020 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...𝑘) ⊆ 𝑍)
67 ffvelcdm 7115 . . . . . . . . . . . . . . . 16 ((𝐹:𝑍⟶ℝ ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
6867ralrimiva 3152 . . . . . . . . . . . . . . 15 (𝐹:𝑍⟶ℝ → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
691, 68syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
7069ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
71 ssralv 4077 . . . . . . . . . . . . 13 ((𝑗...𝑘) ⊆ 𝑍 → (∀𝑛𝑍 (𝐹𝑛) ∈ ℝ → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ))
7266, 70, 71sylc 65 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ)
7372r19.21bi 3257 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...𝑘)) → (𝐹𝑛) ∈ ℝ)
74 fzssuz 13625 . . . . . . . . . . . . . 14 (𝑗...(𝑘 − 1)) ⊆ (ℤ𝑗)
7574, 65sstrid 4020 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...(𝑘 − 1)) ⊆ 𝑍)
7675sselda 4008 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → 𝑛𝑍)
77 climinf.6 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7877ralrimiva 3152 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7978ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑘𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
80 fvoveq1 7471 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
81 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8280, 81breq12d 5179 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
8382rspccva 3634 . . . . . . . . . . . . 13 ((∀𝑘𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ 𝑛𝑍) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
8479, 83sylan 579 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛𝑍) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
8576, 84syldan 590 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
8660, 73, 85monoord2 14084 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ≤ (𝐹𝑗))
8755, 58, 59, 86lesub1dd 11906 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )))
8855, 59resubcld 11718 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
8958, 59resubcld 11718 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
9024ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑦 ∈ ℝ)
91 lelttr 11380 . . . . . . . . . 10 ((((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ∈ ℝ ∧ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∧ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
9288, 89, 90, 91syl3anc 1371 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∧ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
9387, 92mpand 694 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦 → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
94 ltsub23 11770 . . . . . . . . 9 (((𝐹𝑗) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦))
9558, 90, 59, 94syl3anc 1371 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦))
962ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ran 𝐹 ⊆ ℝ)
973adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → 𝐹 Fn 𝑍)
98 fnfvelrn 7114 . . . . . . . . . . . 12 ((𝐹 Fn 𝑍𝑘𝑍) → (𝐹𝑘) ∈ ran 𝐹)
9997, 53, 98syl2an 595 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ran 𝐹)
10096, 99sseldd 4009 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ℝ)
10117ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
102 infrelb 12280 . . . . . . . . . . 11 ((ran 𝐹 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦 ∧ (𝐹𝑘) ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑘))
10396, 101, 99, 102syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑘))
10459, 100, 103abssubge0d 15480 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) = ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )))
105104breq1d 5176 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦 ↔ ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
10693, 95, 1053imtr4d 294 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → (abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
107106anassrs 467 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → (abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
108107ralrimdva 3160 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
109108reximdva 3174 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
11051, 109mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)
111110ralrimiva 3152 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)
1127fvexi 6934 . . . 4 𝑍 ∈ V
113 fex 7263 . . . 4 ((𝐹:𝑍⟶ℝ ∧ 𝑍 ∈ V) → 𝐹 ∈ V)
1141, 112, 113sylancl 585 . . 3 (𝜑𝐹 ∈ V)
115 eqidd 2741 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
1161ffvelcdmda 7118 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
117116recnd 11318 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1187, 4, 114, 115, 37, 117clim2c 15551 . 2 (𝜑 → (𝐹 ⇝ inf(ran 𝐹, ℝ, < ) ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
119111, 118mpbird 257 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  wss 3976  c0 4352   class class class wbr 5166  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  infcinf 9510  cc 11182  cr 11183  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cz 12639  cuz 12903  +crp 13057  ...cfz 13567  abscabs 15283  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  climinff  45532  climinf2lem  45627  supcnvlimsup  45661  stirlinglem13  46007
  Copyright terms: Public domain W3C validator