MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsqz2 Structured version   Visualization version   GIF version

Theorem climsqz2 15430
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climsqz.5 (𝜑𝐺𝑊)
climsqz.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climsqz.7 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
climsqz2.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
climsqz2.9 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐺𝑘))
Assertion
Ref Expression
climsqz2 (𝜑𝐺𝐴)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem climsqz2
Dummy variables 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . . . . 5 𝑍 = (ℤ𝑀)
2 climadd.2 . . . . . 6 (𝜑𝑀 ∈ ℤ)
32adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 simpr 485 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5 eqidd 2738 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
6 climadd.4 . . . . . 6 (𝜑𝐹𝐴)
76adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐹𝐴)
81, 3, 4, 5, 7climi2 15299 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
91uztrn2 12681 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
10 climsqz.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
11 climsqz.6 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
121, 2, 6, 11climrecl 15371 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
1312adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
14 climsqz2.8 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
1510, 11, 13, 14lesub1dd 11671 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝐺𝑘) − 𝐴) ≤ ((𝐹𝑘) − 𝐴))
16 climsqz2.9 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐺𝑘))
1713, 10, 16abssubge0d 15222 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) = ((𝐺𝑘) − 𝐴))
1813, 10, 11, 16, 14letrd 11212 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐹𝑘))
1913, 11, 18abssubge0d 15222 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) = ((𝐹𝑘) − 𝐴))
2015, 17, 193brtr4d 5119 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)))
2120adantlr 712 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)))
2210adantlr 712 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
2312ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝐴 ∈ ℝ)
2422, 23resubcld 11483 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐺𝑘) − 𝐴) ∈ ℝ)
2524recnd 11083 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐺𝑘) − 𝐴) ∈ ℂ)
2625abscld 15227 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ∈ ℝ)
2711adantlr 712 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
2827, 23resubcld 11483 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
2928recnd 11083 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
3029abscld 15227 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
31 rpre 12818 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
3231ad2antlr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥 ∈ ℝ)
33 lelttr 11145 . . . . . . . . . 10 (((abs‘((𝐺𝑘) − 𝐴)) ∈ ℝ ∧ (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3426, 30, 32, 33syl3anc 1370 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (((abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3521, 34mpand 692 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
369, 35sylan2 593 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3736anassrs 468 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3837ralimdva 3161 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3938reximdva 3162 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
408, 39mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥)
4140ralrimiva 3140 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥)
42 climsqz.5 . . 3 (𝜑𝐺𝑊)
43 eqidd 2738 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
4412recnd 11083 . . 3 (𝜑𝐴 ∈ ℂ)
4510recnd 11083 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
461, 2, 42, 43, 44, 45clim2c 15293 . 2 (𝜑 → (𝐺𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
4741, 46mpbird 256 1 (𝜑𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3062  wrex 3071   class class class wbr 5087  cfv 6466  (class class class)co 7317  cr 10950   < clt 11089  cle 11090  cmin 11285  cz 12399  cuz 12662  +crp 12810  abscabs 15024  cli 15272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028  ax-pre-sup 11029
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-er 8548  df-pm 8668  df-en 8784  df-dom 8785  df-sdom 8786  df-sup 9278  df-inf 9279  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-nn 12054  df-2 12116  df-3 12117  df-n0 12314  df-z 12400  df-uz 12663  df-rp 12811  df-fl 13592  df-seq 13802  df-exp 13863  df-cj 14889  df-re 14890  df-im 14891  df-sqrt 15025  df-abs 15026  df-clim 15276  df-rlim 15277
This theorem is referenced by:  expcnv  15655  explecnv  15656  plyeq0lem  25454  leibpi  26175  emcllem4  26231  basellem6  26318  basellem9  26321  wallispilem5  43860  stirlinglem1  43865
  Copyright terms: Public domain W3C validator