MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsqz2 Structured version   Visualization version   GIF version

Theorem climsqz2 15585
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climsqz.5 (𝜑𝐺𝑊)
climsqz.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climsqz.7 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
climsqz2.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
climsqz2.9 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐺𝑘))
Assertion
Ref Expression
climsqz2 (𝜑𝐺𝐴)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem climsqz2
Dummy variables 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . . . . 5 𝑍 = (ℤ𝑀)
2 climadd.2 . . . . . 6 (𝜑𝑀 ∈ ℤ)
32adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 simpr 485 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5 eqidd 2733 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
6 climadd.4 . . . . . 6 (𝜑𝐹𝐴)
76adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐹𝐴)
81, 3, 4, 5, 7climi2 15454 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
91uztrn2 12840 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
10 climsqz.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
11 climsqz.6 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
121, 2, 6, 11climrecl 15526 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
1312adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
14 climsqz2.8 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
1510, 11, 13, 14lesub1dd 11829 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝐺𝑘) − 𝐴) ≤ ((𝐹𝑘) − 𝐴))
16 climsqz2.9 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐺𝑘))
1713, 10, 16abssubge0d 15377 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) = ((𝐺𝑘) − 𝐴))
1813, 10, 11, 16, 14letrd 11370 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐹𝑘))
1913, 11, 18abssubge0d 15377 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) = ((𝐹𝑘) − 𝐴))
2015, 17, 193brtr4d 5180 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)))
2120adantlr 713 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)))
2210adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
2312ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝐴 ∈ ℝ)
2422, 23resubcld 11641 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐺𝑘) − 𝐴) ∈ ℝ)
2524recnd 11241 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐺𝑘) − 𝐴) ∈ ℂ)
2625abscld 15382 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ∈ ℝ)
2711adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
2827, 23resubcld 11641 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
2928recnd 11241 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
3029abscld 15382 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
31 rpre 12981 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
3231ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥 ∈ ℝ)
33 lelttr 11303 . . . . . . . . . 10 (((abs‘((𝐺𝑘) − 𝐴)) ∈ ℝ ∧ (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3426, 30, 32, 33syl3anc 1371 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (((abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3521, 34mpand 693 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
369, 35sylan2 593 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3736anassrs 468 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3837ralimdva 3167 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3938reximdva 3168 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
408, 39mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥)
4140ralrimiva 3146 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥)
42 climsqz.5 . . 3 (𝜑𝐺𝑊)
43 eqidd 2733 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
4412recnd 11241 . . 3 (𝜑𝐴 ∈ ℂ)
4510recnd 11241 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
461, 2, 42, 43, 44, 45clim2c 15448 . 2 (𝜑 → (𝐺𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
4741, 46mpbird 256 1 (𝜑𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070   class class class wbr 5148  cfv 6543  (class class class)co 7408  cr 11108   < clt 11247  cle 11248  cmin 11443  cz 12557  cuz 12821  +crp 12973  abscabs 15180  cli 15427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-fl 13756  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-rlim 15432
This theorem is referenced by:  expcnv  15809  explecnv  15810  plyeq0lem  25723  leibpi  26444  emcllem4  26500  basellem6  26587  basellem9  26590  wallispilem5  44775  stirlinglem1  44780
  Copyright terms: Public domain W3C validator