MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim0c Structured version   Visualization version   GIF version

Theorem clim0c 15288
Description: Express the predicate 𝐹 converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
clim0.1 𝑍 = (ℤ𝑀)
clim0.2 (𝜑𝑀 ∈ ℤ)
clim0.3 (𝜑𝐹𝑉)
clim0.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
clim0c.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
clim0c (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑘)   𝑉(𝑥,𝑗,𝑘)   𝑍(𝑥)

Proof of Theorem clim0c
StepHypRef Expression
1 clim0.1 . . 3 𝑍 = (ℤ𝑀)
2 clim0.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 clim0.3 . . 3 (𝜑𝐹𝑉)
4 clim0.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
5 0cnd 11041 . . 3 (𝜑 → 0 ∈ ℂ)
6 clim0c.6 . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
71, 2, 3, 4, 5, 6clim2c 15286 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵 − 0)) < 𝑥))
81uztrn2 12674 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
96subid1d 11394 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐵 − 0) = 𝐵)
109fveq2d 6815 . . . . . . . 8 ((𝜑𝑘𝑍) → (abs‘(𝐵 − 0)) = (abs‘𝐵))
1110breq1d 5097 . . . . . . 7 ((𝜑𝑘𝑍) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
128, 11sylan2 593 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
1312anassrs 468 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
1413ralbidva 3169 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
1514rexbidva 3170 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
1615ralbidv 3171 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
177, 16bitrd 278 1 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3062  wrex 3071   class class class wbr 5087  cfv 6465  (class class class)co 7315  cc 10942  0cc0 10944   < clt 11082  cmin 11278  cz 12392  cuz 12655  +crp 12803  abscabs 15017  cli 15265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-po 5521  df-so 5522  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-z 12393  df-uz 12656  df-clim 15269
This theorem is referenced by:  climabs0  15366  serf0  15464  iseralt  15468  lmclim2  35972  geomcau  35973  fourierdlem103  43987  fourierdlem104  43988
  Copyright terms: Public domain W3C validator