MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reparphti Structured version   Visualization version   GIF version

Theorem reparphti 24923
Description: Lemma for reparpht 24925. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) Avoid ax-mulf 11086. (Revised by GG, 16-Mar-2025.)
Hypotheses
Ref Expression
reparpht.1 (𝜑𝐹 ∈ (II Cn 𝐽))
reparpht.2 (𝜑𝐺 ∈ (II Cn II))
reparpht.3 (𝜑 → (𝐺‘0) = 0)
reparpht.4 (𝜑 → (𝐺‘1) = 1)
reparphti.5 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))))
Assertion
Ref Expression
reparphti (𝜑𝐻 ∈ ((𝐹𝐺)(PHtpy‘𝐽)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)

Proof of Theorem reparphti
Dummy variables 𝑠 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reparpht.2 . . 3 (𝜑𝐺 ∈ (II Cn II))
2 reparpht.1 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
3 cnco 23181 . . 3 ((𝐺 ∈ (II Cn II) ∧ 𝐹 ∈ (II Cn 𝐽)) → (𝐹𝐺) ∈ (II Cn 𝐽))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐹𝐺) ∈ (II Cn 𝐽))
5 reparphti.5 . . 3 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))))
6 iitopon 24799 . . . . 5 II ∈ (TopOn‘(0[,]1))
76a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
8 eqid 2731 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
98cnfldtop 24698 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
10 cnrest2r 23202 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ Top → ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld)))
119, 10mp1i 13 . . . . . . . . 9 (𝜑 → ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld)))
127, 7cnmpt2nd 23584 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn II))
13 iirevcn 24851 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II)
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II))
15 oveq2 7354 . . . . . . . . . . 11 (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦))
167, 7, 12, 7, 14, 15cnmpt21 23586 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn II))
178dfii3 24803 . . . . . . . . . . 11 II = ((TopOpen‘ℂfld) ↾t (0[,]1))
1817oveq2i 7357 . . . . . . . . . 10 ((II ×t II) Cn II) = ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))
1916, 18eleqtrdi 2841 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2011, 19sseldd 3930 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
217, 7cnmpt1st 23583 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn II))
227, 7, 21, 1cnmpt21f 23587 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn II))
2322, 18eleqtrdi 2841 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2411, 23sseldd 3930 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
258cnfldtopon 24697 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2625a1i 11 . . . . . . . 8 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
278mpomulcn 24785 . . . . . . . . 9 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2827a1i 11 . . . . . . . 8 (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
29 oveq12 7355 . . . . . . . 8 ((𝑢 = (1 − 𝑦) ∧ 𝑣 = (𝐺𝑥)) → (𝑢 · 𝑣) = ((1 − 𝑦) · (𝐺𝑥)))
307, 7, 20, 24, 26, 26, 28, 29cnmpt22 23589 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((1 − 𝑦) · (𝐺𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
319, 10ax-mp 5 . . . . . . . . . 10 ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld))
3218, 31eqsstri 3976 . . . . . . . . 9 ((II ×t II) Cn II) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld))
3332, 12sselid 3927 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
3432, 21sselid 3927 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
35 oveq12 7355 . . . . . . . 8 ((𝑢 = 𝑦𝑣 = 𝑥) → (𝑢 · 𝑣) = (𝑦 · 𝑥))
367, 7, 33, 34, 26, 26, 28, 35cnmpt22 23589 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑦 · 𝑥)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
378addcn 24781 . . . . . . . 8 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3837a1i 11 . . . . . . 7 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
397, 7, 30, 36, 38cnmpt22f 23590 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
40 iiuni 24801 . . . . . . . . . . . . . . 15 (0[,]1) = II
4140, 40cnf 23161 . . . . . . . . . . . . . 14 (𝐺 ∈ (II Cn II) → 𝐺:(0[,]1)⟶(0[,]1))
421, 41syl 17 . . . . . . . . . . . . 13 (𝜑𝐺:(0[,]1)⟶(0[,]1))
4342ffvelcdmda 7017 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0[,]1)) → (𝐺𝑥) ∈ (0[,]1))
4443adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (𝐺𝑥) ∈ (0[,]1))
45 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → 𝑥 ∈ (0[,]1))
46 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → 𝑦 ∈ (0[,]1))
47 0re 11114 . . . . . . . . . . . 12 0 ∈ ℝ
48 1re 11112 . . . . . . . . . . . 12 1 ∈ ℝ
49 icccvx 24875 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝐺𝑥) ∈ (0[,]1) ∧ 𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1)))
5047, 48, 49mp2an 692 . . . . . . . . . . 11 (((𝐺𝑥) ∈ (0[,]1) ∧ 𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
5144, 45, 46, 50syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
5251ralrimivva 3175 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
53 eqid 2731 . . . . . . . . . 10 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)))
5453fmpo 8000 . . . . . . . . 9 (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))):((0[,]1) × (0[,]1))⟶(0[,]1))
5552, 54sylib 218 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))):((0[,]1) × (0[,]1))⟶(0[,]1))
5655frnd 6659 . . . . . . 7 (𝜑 → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ⊆ (0[,]1))
57 unitsscn 13400 . . . . . . . 8 (0[,]1) ⊆ ℂ
5857a1i 11 . . . . . . 7 (𝜑 → (0[,]1) ⊆ ℂ)
59 cnrest2 23201 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
6026, 56, 58, 59syl3anc 1373 . . . . . 6 (𝜑 → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
6139, 60mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
6261, 18eleqtrrdi 2842 . . . 4 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn II))
637, 7, 62, 2cnmpt21f 23587 . . 3 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)))) ∈ ((II ×t II) Cn 𝐽))
645, 63eqeltrid 2835 . 2 (𝜑𝐻 ∈ ((II ×t II) Cn 𝐽))
6542ffvelcdmda 7017 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺𝑠) ∈ (0[,]1))
6657, 65sselid 3927 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺𝑠) ∈ ℂ)
6766mullidd 11130 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (1 · (𝐺𝑠)) = (𝐺𝑠))
68 elunitcn 13368 . . . . . . . 8 (𝑠 ∈ (0[,]1) → 𝑠 ∈ ℂ)
6968adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ)
7069mul02d 11311 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (0 · 𝑠) = 0)
7167, 70oveq12d 7364 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((1 · (𝐺𝑠)) + (0 · 𝑠)) = ((𝐺𝑠) + 0))
7266addridd 11313 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐺𝑠) + 0) = (𝐺𝑠))
7371, 72eqtrd 2766 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((1 · (𝐺𝑠)) + (0 · 𝑠)) = (𝐺𝑠))
7473fveq2d 6826 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))) = (𝐹‘(𝐺𝑠)))
75 simpr 484 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
76 0elunit 13369 . . . 4 0 ∈ (0[,]1)
77 simpr 484 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
7877oveq2d 7362 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 0) → (1 − 𝑦) = (1 − 0))
79 1m0e1 12241 . . . . . . . . 9 (1 − 0) = 1
8078, 79eqtrdi 2782 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (1 − 𝑦) = 1)
81 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
8281fveq2d 6826 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (𝐺𝑥) = (𝐺𝑠))
8380, 82oveq12d 7364 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → ((1 − 𝑦) · (𝐺𝑥)) = (1 · (𝐺𝑠)))
8477, 81oveq12d 7364 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (𝑦 · 𝑥) = (0 · 𝑠))
8583, 84oveq12d 7364 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = ((1 · (𝐺𝑠)) + (0 · 𝑠)))
8685fveq2d 6826 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
87 fvex 6835 . . . . 5 (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))) ∈ V
8886, 5, 87ovmpoa 7501 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
8975, 76, 88sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
90 fvco3 6921 . . . 4 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘𝑠) = (𝐹‘(𝐺𝑠)))
9142, 90sylan 580 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘𝑠) = (𝐹‘(𝐺𝑠)))
9274, 89, 913eqtr4d 2776 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = ((𝐹𝐺)‘𝑠))
93 1elunit 13370 . . . 4 1 ∈ (0[,]1)
94 simpr 484 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
9594oveq2d 7362 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → (1 − 𝑦) = (1 − 1))
96 1m1e0 12197 . . . . . . . . 9 (1 − 1) = 0
9795, 96eqtrdi 2782 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (1 − 𝑦) = 0)
98 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
9998fveq2d 6826 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (𝐺𝑥) = (𝐺𝑠))
10097, 99oveq12d 7364 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((1 − 𝑦) · (𝐺𝑥)) = (0 · (𝐺𝑠)))
10194, 98oveq12d 7364 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → (𝑦 · 𝑥) = (1 · 𝑠))
102100, 101oveq12d 7364 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = ((0 · (𝐺𝑠)) + (1 · 𝑠)))
103102fveq2d 6826 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
104 fvex 6835 . . . . 5 (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))) ∈ V
105103, 5, 104ovmpoa 7501 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
10675, 93, 105sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
10766mul02d 11311 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (0 · (𝐺𝑠)) = 0)
10869mullidd 11130 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (1 · 𝑠) = 𝑠)
109107, 108oveq12d 7364 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((0 · (𝐺𝑠)) + (1 · 𝑠)) = (0 + 𝑠))
11069addlidd 11314 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (0 + 𝑠) = 𝑠)
111109, 110eqtrd 2766 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0 · (𝐺𝑠)) + (1 · 𝑠)) = 𝑠)
112111fveq2d 6826 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))) = (𝐹𝑠))
113106, 112eqtrd 2766 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹𝑠))
114 reparpht.3 . . . . . . . . 9 (𝜑 → (𝐺‘0) = 0)
115114adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘0) = 0)
116115oveq2d 7362 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘0)) = ((1 − 𝑠) · 0))
117 ax-1cn 11064 . . . . . . . . 9 1 ∈ ℂ
118 subcl 11359 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − 𝑠) ∈ ℂ)
119117, 69, 118sylancr 587 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ ℂ)
120119mul01d 11312 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 0) = 0)
121116, 120eqtrd 2766 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘0)) = 0)
12269mul01d 11312 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠 · 0) = 0)
123121, 122oveq12d 7364 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)) = (0 + 0))
124 00id 11288 . . . . 5 (0 + 0) = 0
125123, 124eqtrdi 2782 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)) = 0)
126125fveq2d 6826 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))) = (𝐹‘0))
127 simpr 484 . . . . . . . . 9 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
128127oveq2d 7362 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (1 − 𝑦) = (1 − 𝑠))
129 simpl 482 . . . . . . . . 9 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
130129fveq2d 6826 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝐺𝑥) = (𝐺‘0))
131128, 130oveq12d 7364 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((1 − 𝑦) · (𝐺𝑥)) = ((1 − 𝑠) · (𝐺‘0)))
132127, 129oveq12d 7364 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑦 · 𝑥) = (𝑠 · 0))
133131, 132oveq12d 7364 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)))
134133fveq2d 6826 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
135 fvex 6835 . . . . 5 (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))) ∈ V
136134, 5, 135ovmpoa 7501 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
13776, 75, 136sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
138 fvco3 6921 . . . . . 6 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 0 ∈ (0[,]1)) → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
13942, 76, 138sylancl 586 . . . . 5 (𝜑 → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
140114fveq2d 6826 . . . . 5 (𝜑 → (𝐹‘(𝐺‘0)) = (𝐹‘0))
141139, 140eqtrd 2766 . . . 4 (𝜑 → ((𝐹𝐺)‘0) = (𝐹‘0))
142141adantr 480 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘0) = (𝐹‘0))
143126, 137, 1423eqtr4d 2776 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = ((𝐹𝐺)‘0))
144 reparpht.4 . . . . . . . . 9 (𝜑 → (𝐺‘1) = 1)
145144adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘1) = 1)
146145oveq2d 7362 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘1)) = ((1 − 𝑠) · 1))
147119mulridd 11129 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 1) = (1 − 𝑠))
148146, 147eqtrd 2766 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘1)) = (1 − 𝑠))
14969mulridd 11129 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠 · 1) = 𝑠)
150148, 149oveq12d 7364 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)) = ((1 − 𝑠) + 𝑠))
151 npcan 11369 . . . . . 6 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((1 − 𝑠) + 𝑠) = 1)
152117, 69, 151sylancr 587 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) + 𝑠) = 1)
153150, 152eqtrd 2766 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)) = 1)
154153fveq2d 6826 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))) = (𝐹‘1))
155 simpr 484 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
156155oveq2d 7362 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (1 − 𝑦) = (1 − 𝑠))
157 simpl 482 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
158157fveq2d 6826 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝐺𝑥) = (𝐺‘1))
159156, 158oveq12d 7364 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((1 − 𝑦) · (𝐺𝑥)) = ((1 − 𝑠) · (𝐺‘1)))
160155, 157oveq12d 7364 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑦 · 𝑥) = (𝑠 · 1))
161159, 160oveq12d 7364 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)))
162161fveq2d 6826 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
163 fvex 6835 . . . . 5 (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))) ∈ V
164162, 5, 163ovmpoa 7501 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
16593, 75, 164sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
166 fvco3 6921 . . . . . 6 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 1 ∈ (0[,]1)) → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
16742, 93, 166sylancl 586 . . . . 5 (𝜑 → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
168144fveq2d 6826 . . . . 5 (𝜑 → (𝐹‘(𝐺‘1)) = (𝐹‘1))
169167, 168eqtrd 2766 . . . 4 (𝜑 → ((𝐹𝐺)‘1) = (𝐹‘1))
170169adantr 480 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘1) = (𝐹‘1))
171154, 165, 1703eqtr4d 2776 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = ((𝐹𝐺)‘1))
1724, 2, 64, 92, 113, 143, 171isphtpy2d 24913 1 (𝜑𝐻 ∈ ((𝐹𝐺)(PHtpy‘𝐽)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wss 3897  cmpt 5170   × cxp 5612  ran crn 5615  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  [,]cicc 13248  t crest 17324  TopOpenctopn 17325  fldccnfld 21291  Topctop 22808  TopOnctopon 22825   Cn ccn 23139   ×t ctx 23475  IIcii 24795  PHtpycphtpy 24894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-ii 24797  df-htpy 24896  df-phtpy 24897
This theorem is referenced by:  reparpht  24925
  Copyright terms: Public domain W3C validator