MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reparphti Structured version   Visualization version   GIF version

Theorem reparphti 24894
Description: Lemma for reparpht 24896. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) Avoid ax-mulf 11089. (Revised by GG, 16-Mar-2025.)
Hypotheses
Ref Expression
reparpht.1 (𝜑𝐹 ∈ (II Cn 𝐽))
reparpht.2 (𝜑𝐺 ∈ (II Cn II))
reparpht.3 (𝜑 → (𝐺‘0) = 0)
reparpht.4 (𝜑 → (𝐺‘1) = 1)
reparphti.5 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))))
Assertion
Ref Expression
reparphti (𝜑𝐻 ∈ ((𝐹𝐺)(PHtpy‘𝐽)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)

Proof of Theorem reparphti
Dummy variables 𝑠 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reparpht.2 . . 3 (𝜑𝐺 ∈ (II Cn II))
2 reparpht.1 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
3 cnco 23151 . . 3 ((𝐺 ∈ (II Cn II) ∧ 𝐹 ∈ (II Cn 𝐽)) → (𝐹𝐺) ∈ (II Cn 𝐽))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐹𝐺) ∈ (II Cn 𝐽))
5 reparphti.5 . . 3 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))))
6 iitopon 24770 . . . . 5 II ∈ (TopOn‘(0[,]1))
76a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
8 eqid 2729 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
98cnfldtop 24669 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
10 cnrest2r 23172 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ Top → ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld)))
119, 10mp1i 13 . . . . . . . . 9 (𝜑 → ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld)))
127, 7cnmpt2nd 23554 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn II))
13 iirevcn 24822 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II)
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ (0[,]1) ↦ (1 − 𝑧)) ∈ (II Cn II))
15 oveq2 7357 . . . . . . . . . . 11 (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦))
167, 7, 12, 7, 14, 15cnmpt21 23556 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn II))
178dfii3 24774 . . . . . . . . . . 11 II = ((TopOpen‘ℂfld) ↾t (0[,]1))
1817oveq2i 7360 . . . . . . . . . 10 ((II ×t II) Cn II) = ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))
1916, 18eleqtrdi 2838 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2011, 19sseldd 3936 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (1 − 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
217, 7cnmpt1st 23553 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn II))
227, 7, 21, 1cnmpt21f 23557 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn II))
2322, 18eleqtrdi 2838 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2411, 23sseldd 3936 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐺𝑥)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
258cnfldtopon 24668 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2625a1i 11 . . . . . . . 8 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
278mpomulcn 24756 . . . . . . . . 9 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2827a1i 11 . . . . . . . 8 (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
29 oveq12 7358 . . . . . . . 8 ((𝑢 = (1 − 𝑦) ∧ 𝑣 = (𝐺𝑥)) → (𝑢 · 𝑣) = ((1 − 𝑦) · (𝐺𝑥)))
307, 7, 20, 24, 26, 26, 28, 29cnmpt22 23559 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((1 − 𝑦) · (𝐺𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
319, 10ax-mp 5 . . . . . . . . . 10 ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld))
3218, 31eqsstri 3982 . . . . . . . . 9 ((II ×t II) Cn II) ⊆ ((II ×t II) Cn (TopOpen‘ℂfld))
3332, 12sselid 3933 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
3432, 21sselid 3933 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
35 oveq12 7358 . . . . . . . 8 ((𝑢 = 𝑦𝑣 = 𝑥) → (𝑢 · 𝑣) = (𝑦 · 𝑥))
367, 7, 33, 34, 26, 26, 28, 35cnmpt22 23559 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑦 · 𝑥)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
378addcn 24752 . . . . . . . 8 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3837a1i 11 . . . . . . 7 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
397, 7, 30, 36, 38cnmpt22f 23560 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
40 iiuni 24772 . . . . . . . . . . . . . . 15 (0[,]1) = II
4140, 40cnf 23131 . . . . . . . . . . . . . 14 (𝐺 ∈ (II Cn II) → 𝐺:(0[,]1)⟶(0[,]1))
421, 41syl 17 . . . . . . . . . . . . 13 (𝜑𝐺:(0[,]1)⟶(0[,]1))
4342ffvelcdmda 7018 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0[,]1)) → (𝐺𝑥) ∈ (0[,]1))
4443adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (𝐺𝑥) ∈ (0[,]1))
45 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → 𝑥 ∈ (0[,]1))
46 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → 𝑦 ∈ (0[,]1))
47 0re 11117 . . . . . . . . . . . 12 0 ∈ ℝ
48 1re 11115 . . . . . . . . . . . 12 1 ∈ ℝ
49 icccvx 24846 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝐺𝑥) ∈ (0[,]1) ∧ 𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1)))
5047, 48, 49mp2an 692 . . . . . . . . . . 11 (((𝐺𝑥) ∈ (0[,]1) ∧ 𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
5144, 45, 46, 50syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
5251ralrimivva 3172 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1))
53 eqid 2729 . . . . . . . . . 10 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)))
5453fmpo 8003 . . . . . . . . 9 (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) ∈ (0[,]1) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))):((0[,]1) × (0[,]1))⟶(0[,]1))
5552, 54sylib 218 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))):((0[,]1) × (0[,]1))⟶(0[,]1))
5655frnd 6660 . . . . . . 7 (𝜑 → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ⊆ (0[,]1))
57 unitsscn 13403 . . . . . . . 8 (0[,]1) ⊆ ℂ
5857a1i 11 . . . . . . 7 (𝜑 → (0[,]1) ⊆ ℂ)
59 cnrest2 23171 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
6026, 56, 58, 59syl3anc 1373 . . . . . 6 (𝜑 → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
6139, 60mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
6261, 18eleqtrrdi 2839 . . . 4 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) ∈ ((II ×t II) Cn II))
637, 7, 62, 2cnmpt21f 23557 . . 3 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)))) ∈ ((II ×t II) Cn 𝐽))
645, 63eqeltrid 2832 . 2 (𝜑𝐻 ∈ ((II ×t II) Cn 𝐽))
6542ffvelcdmda 7018 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺𝑠) ∈ (0[,]1))
6657, 65sselid 3933 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺𝑠) ∈ ℂ)
6766mullidd 11133 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (1 · (𝐺𝑠)) = (𝐺𝑠))
68 elunitcn 13371 . . . . . . . 8 (𝑠 ∈ (0[,]1) → 𝑠 ∈ ℂ)
6968adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ)
7069mul02d 11314 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (0 · 𝑠) = 0)
7167, 70oveq12d 7367 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((1 · (𝐺𝑠)) + (0 · 𝑠)) = ((𝐺𝑠) + 0))
7266addridd 11316 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐺𝑠) + 0) = (𝐺𝑠))
7371, 72eqtrd 2764 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((1 · (𝐺𝑠)) + (0 · 𝑠)) = (𝐺𝑠))
7473fveq2d 6826 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))) = (𝐹‘(𝐺𝑠)))
75 simpr 484 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
76 0elunit 13372 . . . 4 0 ∈ (0[,]1)
77 simpr 484 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
7877oveq2d 7365 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 0) → (1 − 𝑦) = (1 − 0))
79 1m0e1 12244 . . . . . . . . 9 (1 − 0) = 1
8078, 79eqtrdi 2780 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (1 − 𝑦) = 1)
81 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
8281fveq2d 6826 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (𝐺𝑥) = (𝐺𝑠))
8380, 82oveq12d 7367 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → ((1 − 𝑦) · (𝐺𝑥)) = (1 · (𝐺𝑠)))
8477, 81oveq12d 7367 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (𝑦 · 𝑥) = (0 · 𝑠))
8583, 84oveq12d 7367 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = ((1 · (𝐺𝑠)) + (0 · 𝑠)))
8685fveq2d 6826 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
87 fvex 6835 . . . . 5 (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))) ∈ V
8886, 5, 87ovmpoa 7504 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
8975, 76, 88sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘((1 · (𝐺𝑠)) + (0 · 𝑠))))
90 fvco3 6922 . . . 4 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘𝑠) = (𝐹‘(𝐺𝑠)))
9142, 90sylan 580 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘𝑠) = (𝐹‘(𝐺𝑠)))
9274, 89, 913eqtr4d 2774 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = ((𝐹𝐺)‘𝑠))
93 1elunit 13373 . . . 4 1 ∈ (0[,]1)
94 simpr 484 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
9594oveq2d 7365 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → (1 − 𝑦) = (1 − 1))
96 1m1e0 12200 . . . . . . . . 9 (1 − 1) = 0
9795, 96eqtrdi 2780 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (1 − 𝑦) = 0)
98 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
9998fveq2d 6826 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (𝐺𝑥) = (𝐺𝑠))
10097, 99oveq12d 7367 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((1 − 𝑦) · (𝐺𝑥)) = (0 · (𝐺𝑠)))
10194, 98oveq12d 7367 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → (𝑦 · 𝑥) = (1 · 𝑠))
102100, 101oveq12d 7367 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = ((0 · (𝐺𝑠)) + (1 · 𝑠)))
103102fveq2d 6826 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
104 fvex 6835 . . . . 5 (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))) ∈ V
105103, 5, 104ovmpoa 7504 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
10675, 93, 105sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))))
10766mul02d 11314 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (0 · (𝐺𝑠)) = 0)
10869mullidd 11133 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (1 · 𝑠) = 𝑠)
109107, 108oveq12d 7367 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((0 · (𝐺𝑠)) + (1 · 𝑠)) = (0 + 𝑠))
11069addlidd 11317 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (0 + 𝑠) = 𝑠)
111109, 110eqtrd 2764 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0 · (𝐺𝑠)) + (1 · 𝑠)) = 𝑠)
112111fveq2d 6826 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘((0 · (𝐺𝑠)) + (1 · 𝑠))) = (𝐹𝑠))
113106, 112eqtrd 2764 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐹𝑠))
114 reparpht.3 . . . . . . . . 9 (𝜑 → (𝐺‘0) = 0)
115114adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘0) = 0)
116115oveq2d 7365 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘0)) = ((1 − 𝑠) · 0))
117 ax-1cn 11067 . . . . . . . . 9 1 ∈ ℂ
118 subcl 11362 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − 𝑠) ∈ ℂ)
119117, 69, 118sylancr 587 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ ℂ)
120119mul01d 11315 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 0) = 0)
121116, 120eqtrd 2764 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘0)) = 0)
12269mul01d 11315 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠 · 0) = 0)
123121, 122oveq12d 7367 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)) = (0 + 0))
124 00id 11291 . . . . 5 (0 + 0) = 0
125123, 124eqtrdi 2780 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)) = 0)
126125fveq2d 6826 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))) = (𝐹‘0))
127 simpr 484 . . . . . . . . 9 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
128127oveq2d 7365 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (1 − 𝑦) = (1 − 𝑠))
129 simpl 482 . . . . . . . . 9 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
130129fveq2d 6826 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝐺𝑥) = (𝐺‘0))
131128, 130oveq12d 7367 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((1 − 𝑦) · (𝐺𝑥)) = ((1 − 𝑠) · (𝐺‘0)))
132127, 129oveq12d 7367 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝑦 · 𝑥) = (𝑠 · 0))
133131, 132oveq12d 7367 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = (((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0)))
134133fveq2d 6826 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
135 fvex 6835 . . . . 5 (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))) ∈ V
136134, 5, 135ovmpoa 7504 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
13776, 75, 136sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘0)) + (𝑠 · 0))))
138 fvco3 6922 . . . . . 6 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 0 ∈ (0[,]1)) → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
13942, 76, 138sylancl 586 . . . . 5 (𝜑 → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
140114fveq2d 6826 . . . . 5 (𝜑 → (𝐹‘(𝐺‘0)) = (𝐹‘0))
141139, 140eqtrd 2764 . . . 4 (𝜑 → ((𝐹𝐺)‘0) = (𝐹‘0))
142141adantr 480 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘0) = (𝐹‘0))
143126, 137, 1423eqtr4d 2774 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = ((𝐹𝐺)‘0))
144 reparpht.4 . . . . . . . . 9 (𝜑 → (𝐺‘1) = 1)
145144adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘1) = 1)
146145oveq2d 7365 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘1)) = ((1 − 𝑠) · 1))
147119mulridd 11132 . . . . . . 7 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · 1) = (1 − 𝑠))
148146, 147eqtrd 2764 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝐺‘1)) = (1 − 𝑠))
14969mulridd 11132 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠 · 1) = 𝑠)
150148, 149oveq12d 7367 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)) = ((1 − 𝑠) + 𝑠))
151 npcan 11372 . . . . . 6 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((1 − 𝑠) + 𝑠) = 1)
152117, 69, 151sylancr 587 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((1 − 𝑠) + 𝑠) = 1)
153150, 152eqtrd 2764 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)) = 1)
154153fveq2d 6826 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))) = (𝐹‘1))
155 simpr 484 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
156155oveq2d 7365 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (1 − 𝑦) = (1 − 𝑠))
157 simpl 482 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
158157fveq2d 6826 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝐺𝑥) = (𝐺‘1))
159156, 158oveq12d 7367 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((1 − 𝑦) · (𝐺𝑥)) = ((1 − 𝑠) · (𝐺‘1)))
160155, 157oveq12d 7367 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑦 · 𝑥) = (𝑠 · 1))
161159, 160oveq12d 7367 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥)) = (((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1)))
162161fveq2d 6826 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝐹‘(((1 − 𝑦) · (𝐺𝑥)) + (𝑦 · 𝑥))) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
163 fvex 6835 . . . . 5 (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))) ∈ V
164162, 5, 163ovmpoa 7504 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
16593, 75, 164sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘(((1 − 𝑠) · (𝐺‘1)) + (𝑠 · 1))))
166 fvco3 6922 . . . . . 6 ((𝐺:(0[,]1)⟶(0[,]1) ∧ 1 ∈ (0[,]1)) → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
16742, 93, 166sylancl 586 . . . . 5 (𝜑 → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
168144fveq2d 6826 . . . . 5 (𝜑 → (𝐹‘(𝐺‘1)) = (𝐹‘1))
169167, 168eqtrd 2764 . . . 4 (𝜑 → ((𝐹𝐺)‘1) = (𝐹‘1))
170169adantr 480 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐺)‘1) = (𝐹‘1))
171154, 165, 1703eqtr4d 2774 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = ((𝐹𝐺)‘1))
1724, 2, 64, 92, 113, 143, 171isphtpy2d 24884 1 (𝜑𝐻 ∈ ((𝐹𝐺)(PHtpy‘𝐽)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3903  cmpt 5173   × cxp 5617  ran crn 5620  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  [,]cicc 13251  t crest 17324  TopOpenctopn 17325  fldccnfld 21261  Topctop 22778  TopOnctopon 22795   Cn ccn 23109   ×t ctx 23445  IIcii 24766  PHtpycphtpy 24865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-ii 24768  df-htpy 24867  df-phtpy 24868
This theorem is referenced by:  reparpht  24896
  Copyright terms: Public domain W3C validator