![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem38 | Structured version Visualization version GIF version |
Description: The function 𝐹 is continuous on every interval induced by the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem38.cn | ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
fourierdlem38.p | ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
fourierdlem38.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
fourierdlem38.q | ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
fourierdlem38.h | ⊢ 𝐻 = (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) |
fourierdlem38.ranq | ⊢ (𝜑 → ran 𝑄 = 𝐻) |
Ref | Expression |
---|---|
fourierdlem38 | ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) | |
2 | simplll 774 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝜑) | |
3 | ioossicc 13434 | . . . . . . . . 9 ⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) | |
4 | pire 26380 | . . . . . . . . . . . . 13 ⊢ π ∈ ℝ | |
5 | 4 | renegcli 11543 | . . . . . . . . . . . 12 ⊢ -π ∈ ℝ |
6 | 5 | rexri 11294 | . . . . . . . . . . 11 ⊢ -π ∈ ℝ* |
7 | 6 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*) |
8 | 4 | rexri 11294 | . . . . . . . . . . 11 ⊢ π ∈ ℝ* |
9 | 8 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*) |
10 | fourierdlem38.p | . . . . . . . . . . . 12 ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | |
11 | fourierdlem38.m | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
12 | fourierdlem38.q | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) | |
13 | 10, 11, 12 | fourierdlem15 45433 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
14 | 13 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
15 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) | |
16 | 7, 9, 14, 15 | fourierdlem8 45426 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π)) |
17 | 3, 16 | sstrid 3989 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π)) |
18 | 17 | sselda 3978 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (-π[,]π)) |
19 | 18 | adantr 480 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π)) |
20 | simpr 484 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹) | |
21 | simpllr 775 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑖 ∈ (0..^𝑀)) | |
22 | 11 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑀 ∈ ℕ) |
23 | 12 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑄 ∈ (𝑃‘𝑀)) |
24 | simp2 1135 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π)) | |
25 | simp3 1136 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹) | |
26 | 24, 25 | eldifd 3955 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((-π[,]π) ∖ dom 𝐹)) |
27 | elun2 4173 | . . . . . . . . 9 ⊢ (𝑥 ∈ ((-π[,]π) ∖ dom 𝐹) → 𝑥 ∈ (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹))) | |
28 | 26, 27 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹))) |
29 | fourierdlem38.ranq | . . . . . . . . . 10 ⊢ (𝜑 → ran 𝑄 = 𝐻) | |
30 | fourierdlem38.h | . . . . . . . . . 10 ⊢ 𝐻 = (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) | |
31 | 29, 30 | eqtr2di 2784 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) = ran 𝑄) |
32 | 31 | 3ad2ant1 1131 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) = ran 𝑄) |
33 | 28, 32 | eleqtrd 2830 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ran 𝑄) |
34 | 10, 22, 23, 33 | fourierdlem12 45430 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
35 | 2, 19, 20, 21, 34 | syl31anc 1371 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
36 | 1, 35 | condan 817 | . . . 4 ⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ dom 𝐹) |
37 | 36 | ralrimiva 3141 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 ∈ dom 𝐹) |
38 | dfss3 3966 | . . 3 ⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 ∈ dom 𝐹) | |
39 | 37, 38 | sylibr 233 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
40 | fourierdlem38.cn | . . 3 ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) | |
41 | 40 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
42 | rescncf 24804 | . 2 ⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))) | |
43 | 39, 41, 42 | sylc 65 | 1 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3056 {crab 3427 ∖ cdif 3941 ∪ cun 3942 ⊆ wss 3944 class class class wbr 5142 ↦ cmpt 5225 dom cdm 5672 ran crn 5673 ↾ cres 5674 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8836 ℂcc 11128 ℝcr 11129 0cc0 11130 1c1 11131 + caddc 11133 ℝ*cxr 11269 < clt 11270 -cneg 11467 ℕcn 12234 (,)cioo 13348 [,]cicc 13351 ...cfz 13508 ..^cfzo 13651 πcpi 16034 –cn→ccncf 24783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8838 df-pm 8839 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-fi 9426 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-ioo 13352 df-ioc 13353 df-ico 13354 df-icc 13355 df-fz 13509 df-fzo 13652 df-fl 13781 df-seq 13991 df-exp 14051 df-fac 14257 df-bc 14286 df-hash 14314 df-shft 15038 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-limsup 15439 df-clim 15456 df-rlim 15457 df-sum 15657 df-ef 16035 df-sin 16037 df-cos 16038 df-pi 16040 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-hom 17248 df-cco 17249 df-rest 17395 df-topn 17396 df-0g 17414 df-gsum 17415 df-topgen 17416 df-pt 17417 df-prds 17420 df-xrs 17475 df-qtop 17480 df-imas 17481 df-xps 17483 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-mulg 19015 df-cntz 19259 df-cmn 19728 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-fbas 21263 df-fg 21264 df-cnfld 21267 df-top 22783 df-topon 22800 df-topsp 22822 df-bases 22836 df-cld 22910 df-ntr 22911 df-cls 22912 df-nei 22989 df-lp 23027 df-perf 23028 df-cn 23118 df-cnp 23119 df-haus 23206 df-tx 23453 df-hmeo 23646 df-fil 23737 df-fm 23829 df-flim 23830 df-flf 23831 df-xms 24213 df-ms 24214 df-tms 24215 df-cncf 24785 df-limc 25782 df-dv 25783 |
This theorem is referenced by: fourierdlem102 45519 fourierdlem114 45531 |
Copyright terms: Public domain | W3C validator |