Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem38 | Structured version Visualization version GIF version |
Description: The function 𝐹 is continuous on every interval induced by the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem38.cn | ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
fourierdlem38.p | ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
fourierdlem38.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
fourierdlem38.q | ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
fourierdlem38.h | ⊢ 𝐻 = (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) |
fourierdlem38.ranq | ⊢ (𝜑 → ran 𝑄 = 𝐻) |
Ref | Expression |
---|---|
fourierdlem38 | ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 765 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) | |
2 | simplll 771 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝜑) | |
3 | ioossicc 13094 | . . . . . . . . 9 ⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) | |
4 | pire 25520 | . . . . . . . . . . . . 13 ⊢ π ∈ ℝ | |
5 | 4 | renegcli 11212 | . . . . . . . . . . . 12 ⊢ -π ∈ ℝ |
6 | 5 | rexri 10964 | . . . . . . . . . . 11 ⊢ -π ∈ ℝ* |
7 | 6 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*) |
8 | 4 | rexri 10964 | . . . . . . . . . . 11 ⊢ π ∈ ℝ* |
9 | 8 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*) |
10 | fourierdlem38.p | . . . . . . . . . . . 12 ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | |
11 | fourierdlem38.m | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
12 | fourierdlem38.q | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) | |
13 | 10, 11, 12 | fourierdlem15 43553 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
14 | 13 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
15 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) | |
16 | 7, 9, 14, 15 | fourierdlem8 43546 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π)) |
17 | 3, 16 | sstrid 3928 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π)) |
18 | 17 | sselda 3917 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (-π[,]π)) |
19 | 18 | adantr 480 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π)) |
20 | simpr 484 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹) | |
21 | simpllr 772 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑖 ∈ (0..^𝑀)) | |
22 | 11 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑀 ∈ ℕ) |
23 | 12 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑄 ∈ (𝑃‘𝑀)) |
24 | simp2 1135 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π)) | |
25 | simp3 1136 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹) | |
26 | 24, 25 | eldifd 3894 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((-π[,]π) ∖ dom 𝐹)) |
27 | elun2 4107 | . . . . . . . . 9 ⊢ (𝑥 ∈ ((-π[,]π) ∖ dom 𝐹) → 𝑥 ∈ (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹))) | |
28 | 26, 27 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹))) |
29 | fourierdlem38.ranq | . . . . . . . . . 10 ⊢ (𝜑 → ran 𝑄 = 𝐻) | |
30 | fourierdlem38.h | . . . . . . . . . 10 ⊢ 𝐻 = (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) | |
31 | 29, 30 | eqtr2di 2796 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) = ran 𝑄) |
32 | 31 | 3ad2ant1 1131 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) = ran 𝑄) |
33 | 28, 32 | eleqtrd 2841 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ran 𝑄) |
34 | 10, 22, 23, 33 | fourierdlem12 43550 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
35 | 2, 19, 20, 21, 34 | syl31anc 1371 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
36 | 1, 35 | condan 814 | . . . 4 ⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ dom 𝐹) |
37 | 36 | ralrimiva 3107 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 ∈ dom 𝐹) |
38 | dfss3 3905 | . . 3 ⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 ∈ dom 𝐹) | |
39 | 37, 38 | sylibr 233 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
40 | fourierdlem38.cn | . . 3 ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) | |
41 | 40 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
42 | rescncf 23966 | . 2 ⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))) | |
43 | 39, 41, 42 | sylc 65 | 1 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ran crn 5581 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 ℝ*cxr 10939 < clt 10940 -cneg 11136 ℕcn 11903 (,)cioo 13008 [,]cicc 13011 ...cfz 13168 ..^cfzo 13311 πcpi 15704 –cn→ccncf 23945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 |
This theorem is referenced by: fourierdlem102 43639 fourierdlem114 43651 |
Copyright terms: Public domain | W3C validator |