Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem38 | Structured version Visualization version GIF version |
Description: The function 𝐹 is continuous on every interval induced by the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem38.cn | ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
fourierdlem38.p | ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
fourierdlem38.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
fourierdlem38.q | ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
fourierdlem38.h | ⊢ 𝐻 = (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) |
fourierdlem38.ranq | ⊢ (𝜑 → ran 𝑄 = 𝐻) |
Ref | Expression |
---|---|
fourierdlem38 | ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 766 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) | |
2 | simplll 772 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝜑) | |
3 | ioossicc 13165 | . . . . . . . . 9 ⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) | |
4 | pire 25615 | . . . . . . . . . . . . 13 ⊢ π ∈ ℝ | |
5 | 4 | renegcli 11282 | . . . . . . . . . . . 12 ⊢ -π ∈ ℝ |
6 | 5 | rexri 11033 | . . . . . . . . . . 11 ⊢ -π ∈ ℝ* |
7 | 6 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*) |
8 | 4 | rexri 11033 | . . . . . . . . . . 11 ⊢ π ∈ ℝ* |
9 | 8 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*) |
10 | fourierdlem38.p | . . . . . . . . . . . 12 ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | |
11 | fourierdlem38.m | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
12 | fourierdlem38.q | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) | |
13 | 10, 11, 12 | fourierdlem15 43663 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
14 | 13 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
15 | simpr 485 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) | |
16 | 7, 9, 14, 15 | fourierdlem8 43656 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π)) |
17 | 3, 16 | sstrid 3932 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π)) |
18 | 17 | sselda 3921 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (-π[,]π)) |
19 | 18 | adantr 481 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π)) |
20 | simpr 485 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹) | |
21 | simpllr 773 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑖 ∈ (0..^𝑀)) | |
22 | 11 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑀 ∈ ℕ) |
23 | 12 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑄 ∈ (𝑃‘𝑀)) |
24 | simp2 1136 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π)) | |
25 | simp3 1137 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹) | |
26 | 24, 25 | eldifd 3898 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((-π[,]π) ∖ dom 𝐹)) |
27 | elun2 4111 | . . . . . . . . 9 ⊢ (𝑥 ∈ ((-π[,]π) ∖ dom 𝐹) → 𝑥 ∈ (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹))) | |
28 | 26, 27 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹))) |
29 | fourierdlem38.ranq | . . . . . . . . . 10 ⊢ (𝜑 → ran 𝑄 = 𝐻) | |
30 | fourierdlem38.h | . . . . . . . . . 10 ⊢ 𝐻 = (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) | |
31 | 29, 30 | eqtr2di 2795 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) = ran 𝑄) |
32 | 31 | 3ad2ant1 1132 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) = ran 𝑄) |
33 | 28, 32 | eleqtrd 2841 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ran 𝑄) |
34 | 10, 22, 23, 33 | fourierdlem12 43660 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
35 | 2, 19, 20, 21, 34 | syl31anc 1372 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
36 | 1, 35 | condan 815 | . . . 4 ⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ dom 𝐹) |
37 | 36 | ralrimiva 3103 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 ∈ dom 𝐹) |
38 | dfss3 3909 | . . 3 ⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 ∈ dom 𝐹) | |
39 | 37, 38 | sylibr 233 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
40 | fourierdlem38.cn | . . 3 ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) | |
41 | 40 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
42 | rescncf 24060 | . 2 ⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))) | |
43 | 39, 41, 42 | sylc 65 | 1 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ran crn 5590 ↾ cres 5591 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 ℝ*cxr 11008 < clt 11009 -cneg 11206 ℕcn 11973 (,)cioo 13079 [,]cicc 13082 ...cfz 13239 ..^cfzo 13382 πcpi 15776 –cn→ccncf 24039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 df-sin 15779 df-cos 15780 df-pi 15782 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-limc 25030 df-dv 25031 |
This theorem is referenced by: fourierdlem102 43749 fourierdlem114 43761 |
Copyright terms: Public domain | W3C validator |