Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem38 Structured version   Visualization version   GIF version

Theorem fourierdlem38 45596
Description: The function 𝐹 is continuous on every interval induced by the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem38.cn (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
fourierdlem38.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem38.m (𝜑𝑀 ∈ ℕ)
fourierdlem38.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem38.h 𝐻 = (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹))
fourierdlem38.ranq (𝜑 → ran 𝑄 = 𝐻)
Assertion
Ref Expression
fourierdlem38 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
Distinct variable groups:   𝑖,𝐹   𝑖,𝑀,𝑛,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑛,𝑝)   𝐴(𝑖,𝑛,𝑝)   𝑃(𝑖,𝑛,𝑝)   𝑄(𝑛)   𝐹(𝑛,𝑝)   𝐻(𝑖,𝑛,𝑝)

Proof of Theorem fourierdlem38
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . . 5 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
2 simplll 773 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝜑)
3 ioossicc 13442 . . . . . . . . 9 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
4 pire 26423 . . . . . . . . . . . . 13 π ∈ ℝ
54renegcli 11551 . . . . . . . . . . . 12 -π ∈ ℝ
65rexri 11302 . . . . . . . . . . 11 -π ∈ ℝ*
76a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
84rexri 11302 . . . . . . . . . . 11 π ∈ ℝ*
98a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
10 fourierdlem38.p . . . . . . . . . . . 12 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
11 fourierdlem38.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
12 fourierdlem38.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ (𝑃𝑀))
1310, 11, 12fourierdlem15 45573 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
1413adantr 479 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
15 simpr 483 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
167, 9, 14, 15fourierdlem8 45566 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
173, 16sstrid 3989 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
1817sselda 3977 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (-π[,]π))
1918adantr 479 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π))
20 simpr 483 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹)
21 simpllr 774 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑖 ∈ (0..^𝑀))
22113ad2ant1 1130 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑀 ∈ ℕ)
23123ad2ant1 1130 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑄 ∈ (𝑃𝑀))
24 simp2 1134 . . . . . . . . . 10 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π))
25 simp3 1135 . . . . . . . . . 10 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹)
2624, 25eldifd 3956 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((-π[,]π) ∖ dom 𝐹))
27 elun2 4176 . . . . . . . . 9 (𝑥 ∈ ((-π[,]π) ∖ dom 𝐹) → 𝑥 ∈ (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)))
2826, 27syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)))
29 fourierdlem38.ranq . . . . . . . . . 10 (𝜑 → ran 𝑄 = 𝐻)
30 fourierdlem38.h . . . . . . . . . 10 𝐻 = (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹))
3129, 30eqtr2di 2782 . . . . . . . . 9 (𝜑 → (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) = ran 𝑄)
32313ad2ant1 1130 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) = ran 𝑄)
3328, 32eleqtrd 2827 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ran 𝑄)
3410, 22, 23, 33fourierdlem12 45570 . . . . . 6 (((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
352, 19, 20, 21, 34syl31anc 1370 . . . . 5 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
361, 35condan 816 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ dom 𝐹)
3736ralrimiva 3136 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 ∈ dom 𝐹)
38 dfss3 3966 . . 3 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 ∈ dom 𝐹)
3937, 38sylibr 233 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
40 fourierdlem38.cn . . 3 (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
4140adantr 479 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹 ∈ (dom 𝐹cn→ℂ))
42 rescncf 24847 . 2 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)))
4339, 41, 42sylc 65 1 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3051  {crab 3419  cdif 3942  cun 3943  wss 3945   class class class wbr 5148  cmpt 5231  dom cdm 5677  ran crn 5678  cres 5679  wf 6543  cfv 6547  (class class class)co 7417  m cmap 8843  cc 11136  cr 11137  0cc0 11138  1c1 11139   + caddc 11141  *cxr 11277   < clt 11278  -cneg 11475  cn 12242  (,)cioo 13356  [,]cicc 13359  ...cfz 13516  ..^cfzo 13659  πcpi 16042  cnccncf 24826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-ioo 13360  df-ioc 13361  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-seq 13999  df-exp 14059  df-fac 14265  df-bc 14294  df-hash 14322  df-shft 15046  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-limsup 15447  df-clim 15464  df-rlim 15465  df-sum 15665  df-ef 16043  df-sin 16045  df-cos 16046  df-pi 16048  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-hom 17256  df-cco 17257  df-rest 17403  df-topn 17404  df-0g 17422  df-gsum 17423  df-topgen 17424  df-pt 17425  df-prds 17428  df-xrs 17483  df-qtop 17488  df-imas 17489  df-xps 17491  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-submnd 18740  df-mulg 19028  df-cntz 19272  df-cmn 19741  df-psmet 21275  df-xmet 21276  df-met 21277  df-bl 21278  df-mopn 21279  df-fbas 21280  df-fg 21281  df-cnfld 21284  df-top 22826  df-topon 22843  df-topsp 22865  df-bases 22879  df-cld 22953  df-ntr 22954  df-cls 22955  df-nei 23032  df-lp 23070  df-perf 23071  df-cn 23161  df-cnp 23162  df-haus 23249  df-tx 23496  df-hmeo 23689  df-fil 23780  df-fm 23872  df-flim 23873  df-flf 23874  df-xms 24256  df-ms 24257  df-tms 24258  df-cncf 24828  df-limc 25825  df-dv 25826
This theorem is referenced by:  fourierdlem102  45659  fourierdlem114  45671
  Copyright terms: Public domain W3C validator