Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem40 Structured version   Visualization version   GIF version

Theorem fourierdlem40 46068
Description: 𝐻 is a continuous function on any partition interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem40.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem40.a (𝜑𝐴 ∈ (-π[,]π))
fourierdlem40.b (𝜑𝐵 ∈ (-π[,]π))
fourierdlem40.x (𝜑𝑋 ∈ ℝ)
fourierdlem40.nxelab (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem40.fcn (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
fourierdlem40.y (𝜑𝑌 ∈ ℝ)
fourierdlem40.w (𝜑𝑊 ∈ ℝ)
fourierdlem40.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
Assertion
Ref Expression
fourierdlem40 (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐹,𝑠   𝑊,𝑠   𝑋,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem40
StepHypRef Expression
1 fourierdlem40.h . . . . 5 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
21reseq1i 6005 . . . 4 (𝐻 ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ (𝐴(,)𝐵))
32a1i 11 . . 3 (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ (𝐴(,)𝐵)))
4 pire 26518 . . . . . . . . 9 π ∈ ℝ
54renegcli 11597 . . . . . . . 8 -π ∈ ℝ
65a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ∈ ℝ)
74a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → π ∈ ℝ)
8 elioore 13437 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
98adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
105a1i 11 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
114a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℝ)
1210, 11iccssred 13494 . . . . . . . . . . 11 (𝜑 → (-π[,]π) ⊆ ℝ)
13 fourierdlem40.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (-π[,]π))
1412, 13sseldd 4009 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1514adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
165, 4elicc2i 13473 . . . . . . . . . . . 12 (𝐴 ∈ (-π[,]π) ↔ (𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π))
1716simp2bi 1146 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → -π ≤ 𝐴)
1813, 17syl 17 . . . . . . . . . 10 (𝜑 → -π ≤ 𝐴)
1918adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝐴)
2015rexrd 11340 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
21 fourierdlem40.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (-π[,]π))
2212, 21sseldd 4009 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2322rexrd 11340 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
2423adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
25 simpr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
26 ioogtlb 45413 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2720, 24, 25, 26syl3anc 1371 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
286, 15, 9, 19, 27lelttrd 11448 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π < 𝑠)
296, 9, 28ltled 11438 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝑠)
3022adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
31 iooltub 45428 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
3220, 24, 25, 31syl3anc 1371 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
335, 4elicc2i 13473 . . . . . . . . . . . 12 (𝐵 ∈ (-π[,]π) ↔ (𝐵 ∈ ℝ ∧ -π ≤ 𝐵𝐵 ≤ π))
3433simp3bi 1147 . . . . . . . . . . 11 (𝐵 ∈ (-π[,]π) → 𝐵 ≤ π)
3521, 34syl 17 . . . . . . . . . 10 (𝜑𝐵 ≤ π)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ π)
379, 30, 7, 32, 36ltletrd 11450 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < π)
389, 7, 37ltled 11438 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≤ π)
396, 7, 9, 29, 38eliccd 45422 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
4039ex 412 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (-π[,]π)))
4140ssrdv 4014 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
4241resmptd 6069 . . 3 (𝜑 → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))))
43 eleq1 2832 . . . . . . . . 9 (𝑠 = 0 → (𝑠 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
4443biimpac 478 . . . . . . . 8 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
4544adantll 713 . . . . . . 7 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
46 fourierdlem40.nxelab . . . . . . . 8 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
4746ad2antrr 725 . . . . . . 7 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
4845, 47pm2.65da 816 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
4948iffalsed 4559 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
50 fourierdlem40.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
5150adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
52 fourierdlem40.x . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
5352adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
5453, 9readdcld 11319 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
5551, 54ffvelcdmd 7119 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
56 fourierdlem40.y . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
57 fourierdlem40.w . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
5856, 57ifcld 4594 . . . . . . . . 9 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5958adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
6055, 59resubcld 11718 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
6160recnd 11318 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
629recnd 11318 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
6348neqned 2953 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
6461, 62, 63divrecd 12073 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
6549, 64eqtrd 2780 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
6665mpteq2dva 5266 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))))
673, 42, 663eqtrd 2784 . 2 (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))))
6855recnd 11318 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
6959recnd 11318 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
7068, 69negsubd 11653 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)))
7170eqcomd 2746 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)))
7271mpteq2dva 5266 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))))
7314, 52readdcld 11319 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
7473rexrd 11340 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝑋) ∈ ℝ*)
7574adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) ∈ ℝ*)
7622, 52readdcld 11319 . . . . . . . . . . . 12 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
7776rexrd 11340 . . . . . . . . . . 11 (𝜑 → (𝐵 + 𝑋) ∈ ℝ*)
7877adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑋) ∈ ℝ*)
7914recnd 11318 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
8052recnd 11318 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
8179, 80addcomd 11492 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝑋) = (𝑋 + 𝐴))
8281adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) = (𝑋 + 𝐴))
8315, 9, 53, 27ltadd2dd 11449 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
8482, 83eqbrtrd 5188 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) < (𝑋 + 𝑠))
859, 30, 53, 32ltadd2dd 11449 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
8622recnd 11318 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
8780, 86addcomd 11492 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝐵) = (𝐵 + 𝑋))
8887adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) = (𝐵 + 𝑋))
8985, 88breqtrd 5192 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝐵 + 𝑋))
9075, 78, 54, 84, 89eliood 45416 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))
91 fvres 6939 . . . . . . . . 9 ((𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
9290, 91syl 17 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
9392eqcomd 2746 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)))
9493mpteq2dva 5266 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))))
95 ioosscn 13469 . . . . . . . 8 ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ
9695a1i 11 . . . . . . 7 (𝜑 → ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ)
97 fourierdlem40.fcn . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
98 ioosscn 13469 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℂ
9998a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
10096, 97, 99, 80, 90fourierdlem23 46051 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10194, 100eqeltrd 2844 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
102 0red 11293 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
10314ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1048adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
105 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝐴)
10627adantlr 714 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
107102, 103, 104, 105, 106lelttrd 11448 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 < 𝑠)
108107iftrued 4556 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
109108negeqd 11530 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑌)
110109mpteq2dva 5266 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌))
11156renegcld 11717 . . . . . . . . . 10 (𝜑 → -𝑌 ∈ ℝ)
112111recnd 11318 . . . . . . . . 9 (𝜑 → -𝑌 ∈ ℂ)
113 ssid 4031 . . . . . . . . . 10 ℂ ⊆ ℂ
114113a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
11599, 112, 114constcncfg 45793 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
116115adantr 480 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
117110, 116eqeltrd 2844 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11814rexrd 11340 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
119118ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 ∈ ℝ*)
12023ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ*)
121 0red 11293 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
122 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → ¬ 0 ≤ 𝐴)
12314adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
124 0red 11293 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 0 ∈ ℝ)
125123, 124ltnled 11437 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴))
126122, 125mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 < 0)
127126adantr 480 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 < 0)
128 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → ¬ 𝐵 ≤ 0)
129 0red 11293 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
13022adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ)
131129, 130ltnled 11437 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
132128, 131mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
133132adantlr 714 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
134119, 120, 121, 127, 133eliood 45416 . . . . . . . 8 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ (𝐴(,)𝐵))
13546ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → ¬ 0 ∈ (𝐴(,)𝐵))
136134, 135condan 817 . . . . . . 7 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐵 ≤ 0)
1378adantl 481 . . . . . . . . . . . 12 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
138 0red 11293 . . . . . . . . . . . 12 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
13922ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
14032adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
141 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ 0)
142137, 139, 138, 140, 141ltletrd 11450 . . . . . . . . . . . 12 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 0)
143137, 138, 142ltnsymd 11439 . . . . . . . . . . 11 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ¬ 0 < 𝑠)
144143iffalsed 4559 . . . . . . . . . 10 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
145144negeqd 11530 . . . . . . . . 9 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑊)
146145mpteq2dva 5266 . . . . . . . 8 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊))
14757recnd 11318 . . . . . . . . . . 11 (𝜑𝑊 ∈ ℂ)
148147negcld 11634 . . . . . . . . . 10 (𝜑 → -𝑊 ∈ ℂ)
14999, 148, 114constcncfg 45793 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
150149adantr 480 . . . . . . . 8 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
151146, 150eqeltrd 2844 . . . . . . 7 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
152136, 151syldan 590 . . . . . 6 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
153117, 152pm2.61dan 812 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
154101, 153addcncf 25497 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
15572, 154eqeltrd 2844 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
156 eqid 2740 . . . 4 (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) = (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠))
157 1cnd 11285 . . . . 5 (𝜑 → 1 ∈ ℂ)
158156cdivcncf 24966 . . . . 5 (1 ∈ ℂ → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
159157, 158syl 17 . . . 4 (𝜑 → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
160 velsn 4664 . . . . . . . 8 (𝑠 ∈ {0} ↔ 𝑠 = 0)
16148, 160sylnibr 329 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 ∈ {0})
16262, 161eldifd 3987 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖ {0}))
163162ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
164 dfss3 3997 . . . . 5 ((𝐴(,)𝐵) ⊆ (ℂ ∖ {0}) ↔ ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
165163, 164sylibr 234 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (ℂ ∖ {0}))
1669, 63rereccld 12121 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℝ)
167166recnd 11318 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℂ)
168156, 159, 165, 114, 167cncfmptssg 45792 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
169155, 168mulcncf 25499 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
17067, 169eqeltrd 2844 1 (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cdif 3973  wss 3976  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  (,)cioo 13407  [,]cicc 13410  πcpi 16114  cnccncf 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  fourierdlem103  46130  fourierdlem104  46131
  Copyright terms: Public domain W3C validator