Proof of Theorem fourierdlem40
Step | Hyp | Ref
| Expression |
1 | | fourierdlem40.h |
. . . . 5
⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) |
2 | 1 | reseq1i 5876 |
. . . 4
⊢ (𝐻 ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ (𝐴(,)𝐵)) |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ (𝐴(,)𝐵))) |
4 | | pire 25520 |
. . . . . . . . 9
⊢ π
∈ ℝ |
5 | 4 | renegcli 11212 |
. . . . . . . 8
⊢ -π
∈ ℝ |
6 | 5 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -π ∈
ℝ) |
7 | 4 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → π ∈
ℝ) |
8 | | elioore 13038 |
. . . . . . . 8
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ) |
9 | 8 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) |
10 | 5 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → -π ∈
ℝ) |
11 | 4 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → π ∈
ℝ) |
12 | 10, 11 | iccssred 13095 |
. . . . . . . . . . 11
⊢ (𝜑 → (-π[,]π) ⊆
ℝ) |
13 | | fourierdlem40.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ (-π[,]π)) |
14 | 12, 13 | sseldd 3918 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) |
15 | 14 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
16 | 5, 4 | elicc2i 13074 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (-π[,]π) ↔
(𝐴 ∈ ℝ ∧
-π ≤ 𝐴 ∧ 𝐴 ≤ π)) |
17 | 16 | simp2bi 1144 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (-π[,]π) →
-π ≤ 𝐴) |
18 | 13, 17 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → -π ≤ 𝐴) |
19 | 18 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝐴) |
20 | 15 | rexrd 10956 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈
ℝ*) |
21 | | fourierdlem40.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ (-π[,]π)) |
22 | 12, 21 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℝ) |
23 | 22 | rexrd 10956 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
24 | 23 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈
ℝ*) |
25 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵)) |
26 | | ioogtlb 42923 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑠
∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠) |
27 | 20, 24, 25, 26 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠) |
28 | 6, 15, 9, 19, 27 | lelttrd 11063 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -π < 𝑠) |
29 | 6, 9, 28 | ltled 11053 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝑠) |
30 | 22 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
31 | | iooltub 42938 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑠
∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵) |
32 | 20, 24, 25, 31 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵) |
33 | 5, 4 | elicc2i 13074 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ (-π[,]π) ↔
(𝐵 ∈ ℝ ∧
-π ≤ 𝐵 ∧ 𝐵 ≤ π)) |
34 | 33 | simp3bi 1145 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (-π[,]π) →
𝐵 ≤
π) |
35 | 21, 34 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ≤ π) |
36 | 35 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ π) |
37 | 9, 30, 7, 32, 36 | ltletrd 11065 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < π) |
38 | 9, 7, 37 | ltled 11053 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≤ π) |
39 | 6, 7, 9, 29, 38 | eliccd 42932 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π)) |
40 | 39 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (-π[,]π))) |
41 | 40 | ssrdv 3923 |
. . . 4
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π)) |
42 | 41 | resmptd 5937 |
. . 3
⊢ (𝜑 → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))) |
43 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑠 = 0 → (𝑠 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵))) |
44 | 43 | biimpac 478 |
. . . . . . . 8
⊢ ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵)) |
45 | 44 | adantll 710 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵)) |
46 | | fourierdlem40.nxelab |
. . . . . . . 8
⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) |
47 | 46 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵)) |
48 | 45, 47 | pm2.65da 813 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0) |
49 | 48 | iffalsed 4467 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) |
50 | | fourierdlem40.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
51 | 50 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ) |
52 | | fourierdlem40.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ ℝ) |
53 | 52 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ) |
54 | 53, 9 | readdcld 10935 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ) |
55 | 51, 54 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
56 | | fourierdlem40.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ ℝ) |
57 | | fourierdlem40.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ ℝ) |
58 | 56, 57 | ifcld 4502 |
. . . . . . . . 9
⊢ (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ) |
59 | 58 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ) |
60 | 55, 59 | resubcld 11333 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ) |
61 | 60 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ) |
62 | 9 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ) |
63 | 48 | neqned 2949 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0) |
64 | 61, 62, 63 | divrecd 11684 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))) |
65 | 49, 64 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))) |
66 | 65 | mpteq2dva 5170 |
. . 3
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))) |
67 | 3, 42, 66 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))) |
68 | 55 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
69 | 59 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ) |
70 | 68, 69 | negsubd 11268 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) |
71 | 70 | eqcomd 2744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))) |
72 | 71 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)))) |
73 | 14, 52 | readdcld 10935 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 + 𝑋) ∈ ℝ) |
74 | 73 | rexrd 10956 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 + 𝑋) ∈
ℝ*) |
75 | 74 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) ∈
ℝ*) |
76 | 22, 52 | readdcld 10935 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 + 𝑋) ∈ ℝ) |
77 | 76 | rexrd 10956 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 + 𝑋) ∈
ℝ*) |
78 | 77 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑋) ∈
ℝ*) |
79 | 14 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ ℂ) |
80 | 52 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ ℂ) |
81 | 79, 80 | addcomd 11107 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 + 𝑋) = (𝑋 + 𝐴)) |
82 | 81 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) = (𝑋 + 𝐴)) |
83 | 15, 9, 53, 27 | ltadd2dd 11064 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠)) |
84 | 82, 83 | eqbrtrd 5092 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) < (𝑋 + 𝑠)) |
85 | 9, 30, 53, 32 | ltadd2dd 11064 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵)) |
86 | 22 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ ℂ) |
87 | 80, 86 | addcomd 11107 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 + 𝐵) = (𝐵 + 𝑋)) |
88 | 87 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) = (𝐵 + 𝑋)) |
89 | 85, 88 | breqtrd 5096 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝐵 + 𝑋)) |
90 | 75, 78, 54, 84, 89 | eliood 42926 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) |
91 | | fvres 6775 |
. . . . . . . . 9
⊢ ((𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠))) |
92 | 90, 91 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠))) |
93 | 92 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))) |
94 | 93 | mpteq2dva 5170 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)))) |
95 | | ioosscn 13070 |
. . . . . . . 8
⊢ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ |
96 | 95 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ) |
97 | | fourierdlem40.fcn |
. . . . . . 7
⊢ (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ)) |
98 | | ioosscn 13070 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ ℂ |
99 | 98 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
100 | 96, 97, 99, 80, 90 | fourierdlem23 43561 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
101 | 94, 100 | eqeltrd 2839 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
102 | | 0red 10909 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ) |
103 | 14 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
104 | 8 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) |
105 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝐴) |
106 | 27 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠) |
107 | 102, 103,
104, 105, 106 | lelttrd 11063 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 < 𝑠) |
108 | 107 | iftrued 4464 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌) |
109 | 108 | negeqd 11145 |
. . . . . . . 8
⊢ (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑌) |
110 | 109 | mpteq2dva 5170 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌)) |
111 | 56 | renegcld 11332 |
. . . . . . . . . 10
⊢ (𝜑 → -𝑌 ∈ ℝ) |
112 | 111 | recnd 10934 |
. . . . . . . . 9
⊢ (𝜑 → -𝑌 ∈ ℂ) |
113 | | ssid 3939 |
. . . . . . . . . 10
⊢ ℂ
⊆ ℂ |
114 | 113 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℂ ⊆
ℂ) |
115 | 99, 112, 114 | constcncfg 43303 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
116 | 115 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
117 | 110, 116 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
118 | 14 | rexrd 10956 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
119 | 118 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 ∈
ℝ*) |
120 | 23 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈
ℝ*) |
121 | | 0red 10909 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈
ℝ) |
122 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 0 ≤ 𝐴) → ¬ 0 ≤ 𝐴) |
123 | 14 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) |
124 | | 0red 10909 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 0 ∈
ℝ) |
125 | 123, 124 | ltnled 11052 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴)) |
126 | 122, 125 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 < 0) |
127 | 126 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 < 0) |
128 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 0) → ¬ 𝐵 ≤ 0) |
129 | | 0red 10909 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 ∈
ℝ) |
130 | 22 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ) |
131 | 129, 130 | ltnled 11052 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 0) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0)) |
132 | 128, 131 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵) |
133 | 132 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵) |
134 | 119, 120,
121, 127, 133 | eliood 42926 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ (𝐴(,)𝐵)) |
135 | 46 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → ¬ 0 ∈ (𝐴(,)𝐵)) |
136 | 134, 135 | condan 814 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐵 ≤ 0) |
137 | 8 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) |
138 | | 0red 10909 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ) |
139 | 22 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
140 | 32 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵) |
141 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ 0) |
142 | 137, 139,
138, 140, 141 | ltletrd 11065 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 0) |
143 | 137, 138,
142 | ltnsymd 11054 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ¬ 0 < 𝑠) |
144 | 143 | iffalsed 4467 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊) |
145 | 144 | negeqd 11145 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑊) |
146 | 145 | mpteq2dva 5170 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊)) |
147 | 57 | recnd 10934 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ ℂ) |
148 | 147 | negcld 11249 |
. . . . . . . . . 10
⊢ (𝜑 → -𝑊 ∈ ℂ) |
149 | 99, 148, 114 | constcncfg 43303 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
150 | 149 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
151 | 146, 150 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
152 | 136, 151 | syldan 590 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
153 | 117, 152 | pm2.61dan 809 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
154 | 101, 153 | addcncf 24513 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
155 | 72, 154 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
156 | | eqid 2738 |
. . . 4
⊢ (𝑠 ∈ (ℂ ∖ {0})
↦ (1 / 𝑠)) = (𝑠 ∈ (ℂ ∖ {0})
↦ (1 / 𝑠)) |
157 | | 1cnd 10901 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℂ) |
158 | 156 | cdivcncf 23990 |
. . . . 5
⊢ (1 ∈
ℂ → (𝑠 ∈
(ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ)) |
159 | 157, 158 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 /
𝑠)) ∈ ((ℂ
∖ {0})–cn→ℂ)) |
160 | | velsn 4574 |
. . . . . . . 8
⊢ (𝑠 ∈ {0} ↔ 𝑠 = 0) |
161 | 48, 160 | sylnibr 328 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 ∈ {0}) |
162 | 62, 161 | eldifd 3894 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖
{0})) |
163 | 162 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖
{0})) |
164 | | dfss3 3905 |
. . . . 5
⊢ ((𝐴(,)𝐵) ⊆ (ℂ ∖ {0}) ↔
∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖
{0})) |
165 | 163, 164 | sylibr 233 |
. . . 4
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (ℂ ∖
{0})) |
166 | 9, 63 | rereccld 11732 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℝ) |
167 | 166 | recnd 10934 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℂ) |
168 | 156, 159,
165, 114, 167 | cncfmptssg 43302 |
. . 3
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
169 | 155, 168 | mulcncf 24515 |
. 2
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
170 | 67, 169 | eqeltrd 2839 |
1
⊢ (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |