Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem40 Structured version   Visualization version   GIF version

Theorem fourierdlem40 46162
Description: 𝐻 is a continuous function on any partition interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem40.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem40.a (𝜑𝐴 ∈ (-π[,]π))
fourierdlem40.b (𝜑𝐵 ∈ (-π[,]π))
fourierdlem40.x (𝜑𝑋 ∈ ℝ)
fourierdlem40.nxelab (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem40.fcn (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
fourierdlem40.y (𝜑𝑌 ∈ ℝ)
fourierdlem40.w (𝜑𝑊 ∈ ℝ)
fourierdlem40.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
Assertion
Ref Expression
fourierdlem40 (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐹,𝑠   𝑊,𝑠   𝑋,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem40
StepHypRef Expression
1 fourierdlem40.h . . . . 5 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
21reseq1i 5993 . . . 4 (𝐻 ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ (𝐴(,)𝐵))
32a1i 11 . . 3 (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ (𝐴(,)𝐵)))
4 pire 26500 . . . . . . . . 9 π ∈ ℝ
54renegcli 11570 . . . . . . . 8 -π ∈ ℝ
65a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ∈ ℝ)
74a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → π ∈ ℝ)
8 elioore 13417 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
98adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
105a1i 11 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
114a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℝ)
1210, 11iccssred 13474 . . . . . . . . . . 11 (𝜑 → (-π[,]π) ⊆ ℝ)
13 fourierdlem40.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (-π[,]π))
1412, 13sseldd 3984 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1514adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
165, 4elicc2i 13453 . . . . . . . . . . . 12 (𝐴 ∈ (-π[,]π) ↔ (𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π))
1716simp2bi 1147 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → -π ≤ 𝐴)
1813, 17syl 17 . . . . . . . . . 10 (𝜑 → -π ≤ 𝐴)
1918adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝐴)
2015rexrd 11311 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
21 fourierdlem40.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (-π[,]π))
2212, 21sseldd 3984 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2322rexrd 11311 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
2423adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
25 simpr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
26 ioogtlb 45508 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2720, 24, 25, 26syl3anc 1373 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
286, 15, 9, 19, 27lelttrd 11419 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π < 𝑠)
296, 9, 28ltled 11409 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝑠)
3022adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
31 iooltub 45523 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
3220, 24, 25, 31syl3anc 1373 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
335, 4elicc2i 13453 . . . . . . . . . . . 12 (𝐵 ∈ (-π[,]π) ↔ (𝐵 ∈ ℝ ∧ -π ≤ 𝐵𝐵 ≤ π))
3433simp3bi 1148 . . . . . . . . . . 11 (𝐵 ∈ (-π[,]π) → 𝐵 ≤ π)
3521, 34syl 17 . . . . . . . . . 10 (𝜑𝐵 ≤ π)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ π)
379, 30, 7, 32, 36ltletrd 11421 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < π)
389, 7, 37ltled 11409 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≤ π)
396, 7, 9, 29, 38eliccd 45517 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
4039ex 412 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (-π[,]π)))
4140ssrdv 3989 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
4241resmptd 6058 . . 3 (𝜑 → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))))
43 eleq1 2829 . . . . . . . . 9 (𝑠 = 0 → (𝑠 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
4443biimpac 478 . . . . . . . 8 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
4544adantll 714 . . . . . . 7 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
46 fourierdlem40.nxelab . . . . . . . 8 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
4746ad2antrr 726 . . . . . . 7 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
4845, 47pm2.65da 817 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
4948iffalsed 4536 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
50 fourierdlem40.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
5150adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
52 fourierdlem40.x . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
5352adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
5453, 9readdcld 11290 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
5551, 54ffvelcdmd 7105 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
56 fourierdlem40.y . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
57 fourierdlem40.w . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
5856, 57ifcld 4572 . . . . . . . . 9 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5958adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
6055, 59resubcld 11691 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
6160recnd 11289 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
629recnd 11289 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
6348neqned 2947 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
6461, 62, 63divrecd 12046 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
6549, 64eqtrd 2777 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
6665mpteq2dva 5242 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))))
673, 42, 663eqtrd 2781 . 2 (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))))
6855recnd 11289 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
6959recnd 11289 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
7068, 69negsubd 11626 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)))
7170eqcomd 2743 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)))
7271mpteq2dva 5242 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))))
7314, 52readdcld 11290 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
7473rexrd 11311 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝑋) ∈ ℝ*)
7574adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) ∈ ℝ*)
7622, 52readdcld 11290 . . . . . . . . . . . 12 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
7776rexrd 11311 . . . . . . . . . . 11 (𝜑 → (𝐵 + 𝑋) ∈ ℝ*)
7877adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑋) ∈ ℝ*)
7914recnd 11289 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
8052recnd 11289 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
8179, 80addcomd 11463 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝑋) = (𝑋 + 𝐴))
8281adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) = (𝑋 + 𝐴))
8315, 9, 53, 27ltadd2dd 11420 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
8482, 83eqbrtrd 5165 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) < (𝑋 + 𝑠))
859, 30, 53, 32ltadd2dd 11420 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
8622recnd 11289 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
8780, 86addcomd 11463 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝐵) = (𝐵 + 𝑋))
8887adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) = (𝐵 + 𝑋))
8985, 88breqtrd 5169 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝐵 + 𝑋))
9075, 78, 54, 84, 89eliood 45511 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))
91 fvres 6925 . . . . . . . . 9 ((𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
9290, 91syl 17 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
9392eqcomd 2743 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)))
9493mpteq2dva 5242 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))))
95 ioosscn 13449 . . . . . . . 8 ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ
9695a1i 11 . . . . . . 7 (𝜑 → ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ)
97 fourierdlem40.fcn . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
98 ioosscn 13449 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℂ
9998a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
10096, 97, 99, 80, 90fourierdlem23 46145 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10194, 100eqeltrd 2841 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
102 0red 11264 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
10314ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1048adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
105 simplr 769 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝐴)
10627adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
107102, 103, 104, 105, 106lelttrd 11419 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 < 𝑠)
108107iftrued 4533 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
109108negeqd 11502 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑌)
110109mpteq2dva 5242 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌))
11156renegcld 11690 . . . . . . . . . 10 (𝜑 → -𝑌 ∈ ℝ)
112111recnd 11289 . . . . . . . . 9 (𝜑 → -𝑌 ∈ ℂ)
113 ssid 4006 . . . . . . . . . 10 ℂ ⊆ ℂ
114113a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
11599, 112, 114constcncfg 45887 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
116115adantr 480 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
117110, 116eqeltrd 2841 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11814rexrd 11311 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
119118ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 ∈ ℝ*)
12023ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ*)
121 0red 11264 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
122 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → ¬ 0 ≤ 𝐴)
12314adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
124 0red 11264 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 0 ∈ ℝ)
125123, 124ltnled 11408 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴))
126122, 125mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 < 0)
127126adantr 480 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 < 0)
128 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → ¬ 𝐵 ≤ 0)
129 0red 11264 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
13022adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ)
131129, 130ltnled 11408 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
132128, 131mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
133132adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
134119, 120, 121, 127, 133eliood 45511 . . . . . . . 8 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ (𝐴(,)𝐵))
13546ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → ¬ 0 ∈ (𝐴(,)𝐵))
136134, 135condan 818 . . . . . . 7 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐵 ≤ 0)
1378adantl 481 . . . . . . . . . . . 12 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
138 0red 11264 . . . . . . . . . . . 12 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
13922ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
14032adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
141 simplr 769 . . . . . . . . . . . . 13 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ 0)
142137, 139, 138, 140, 141ltletrd 11421 . . . . . . . . . . . 12 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 0)
143137, 138, 142ltnsymd 11410 . . . . . . . . . . 11 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ¬ 0 < 𝑠)
144143iffalsed 4536 . . . . . . . . . 10 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
145144negeqd 11502 . . . . . . . . 9 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑊)
146145mpteq2dva 5242 . . . . . . . 8 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊))
14757recnd 11289 . . . . . . . . . . 11 (𝜑𝑊 ∈ ℂ)
148147negcld 11607 . . . . . . . . . 10 (𝜑 → -𝑊 ∈ ℂ)
14999, 148, 114constcncfg 45887 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
150149adantr 480 . . . . . . . 8 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
151146, 150eqeltrd 2841 . . . . . . 7 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
152136, 151syldan 591 . . . . . 6 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
153117, 152pm2.61dan 813 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
154101, 153addcncf 25478 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
15572, 154eqeltrd 2841 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
156 eqid 2737 . . . 4 (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) = (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠))
157 1cnd 11256 . . . . 5 (𝜑 → 1 ∈ ℂ)
158156cdivcncf 24947 . . . . 5 (1 ∈ ℂ → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
159157, 158syl 17 . . . 4 (𝜑 → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
160 velsn 4642 . . . . . . . 8 (𝑠 ∈ {0} ↔ 𝑠 = 0)
16148, 160sylnibr 329 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 ∈ {0})
16262, 161eldifd 3962 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖ {0}))
163162ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
164 dfss3 3972 . . . . 5 ((𝐴(,)𝐵) ⊆ (ℂ ∖ {0}) ↔ ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
165163, 164sylibr 234 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (ℂ ∖ {0}))
1669, 63rereccld 12094 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℝ)
167166recnd 11289 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℂ)
168156, 159, 165, 114, 167cncfmptssg 45886 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
169155, 168mulcncf 25480 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
17067, 169eqeltrd 2841 1 (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  cdif 3948  wss 3951  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  (,)cioo 13387  [,]cicc 13390  πcpi 16102  cnccncf 24902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  fourierdlem103  46224  fourierdlem104  46225
  Copyright terms: Public domain W3C validator