Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem40 Structured version   Visualization version   GIF version

Theorem fourierdlem40 46118
Description: 𝐻 is a continuous function on any partition interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem40.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem40.a (𝜑𝐴 ∈ (-π[,]π))
fourierdlem40.b (𝜑𝐵 ∈ (-π[,]π))
fourierdlem40.x (𝜑𝑋 ∈ ℝ)
fourierdlem40.nxelab (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem40.fcn (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
fourierdlem40.y (𝜑𝑌 ∈ ℝ)
fourierdlem40.w (𝜑𝑊 ∈ ℝ)
fourierdlem40.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
Assertion
Ref Expression
fourierdlem40 (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐹,𝑠   𝑊,𝑠   𝑋,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem40
StepHypRef Expression
1 fourierdlem40.h . . . . 5 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
21reseq1i 5935 . . . 4 (𝐻 ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ (𝐴(,)𝐵))
32a1i 11 . . 3 (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ (𝐴(,)𝐵)))
4 pire 26342 . . . . . . . . 9 π ∈ ℝ
54renegcli 11459 . . . . . . . 8 -π ∈ ℝ
65a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ∈ ℝ)
74a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → π ∈ ℝ)
8 elioore 13312 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
98adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
105a1i 11 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
114a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℝ)
1210, 11iccssred 13371 . . . . . . . . . . 11 (𝜑 → (-π[,]π) ⊆ ℝ)
13 fourierdlem40.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (-π[,]π))
1412, 13sseldd 3944 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1514adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
165, 4elicc2i 13349 . . . . . . . . . . . 12 (𝐴 ∈ (-π[,]π) ↔ (𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π))
1716simp2bi 1146 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → -π ≤ 𝐴)
1813, 17syl 17 . . . . . . . . . 10 (𝜑 → -π ≤ 𝐴)
1918adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝐴)
2015rexrd 11200 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
21 fourierdlem40.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (-π[,]π))
2212, 21sseldd 3944 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2322rexrd 11200 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
2423adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
25 simpr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
26 ioogtlb 45466 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2720, 24, 25, 26syl3anc 1373 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
286, 15, 9, 19, 27lelttrd 11308 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π < 𝑠)
296, 9, 28ltled 11298 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝑠)
3022adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
31 iooltub 45481 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
3220, 24, 25, 31syl3anc 1373 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
335, 4elicc2i 13349 . . . . . . . . . . . 12 (𝐵 ∈ (-π[,]π) ↔ (𝐵 ∈ ℝ ∧ -π ≤ 𝐵𝐵 ≤ π))
3433simp3bi 1147 . . . . . . . . . . 11 (𝐵 ∈ (-π[,]π) → 𝐵 ≤ π)
3521, 34syl 17 . . . . . . . . . 10 (𝜑𝐵 ≤ π)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ π)
379, 30, 7, 32, 36ltletrd 11310 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < π)
389, 7, 37ltled 11298 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≤ π)
396, 7, 9, 29, 38eliccd 45475 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
4039ex 412 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (-π[,]π)))
4140ssrdv 3949 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
4241resmptd 6000 . . 3 (𝜑 → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))))
43 eleq1 2816 . . . . . . . . 9 (𝑠 = 0 → (𝑠 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
4443biimpac 478 . . . . . . . 8 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
4544adantll 714 . . . . . . 7 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
46 fourierdlem40.nxelab . . . . . . . 8 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
4746ad2antrr 726 . . . . . . 7 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
4845, 47pm2.65da 816 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
4948iffalsed 4495 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
50 fourierdlem40.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
5150adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
52 fourierdlem40.x . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
5352adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
5453, 9readdcld 11179 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
5551, 54ffvelcdmd 7039 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
56 fourierdlem40.y . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
57 fourierdlem40.w . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
5856, 57ifcld 4531 . . . . . . . . 9 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5958adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
6055, 59resubcld 11582 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
6160recnd 11178 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
629recnd 11178 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
6348neqned 2932 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
6461, 62, 63divrecd 11937 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
6549, 64eqtrd 2764 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
6665mpteq2dva 5195 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))))
673, 42, 663eqtrd 2768 . 2 (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))))
6855recnd 11178 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
6959recnd 11178 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
7068, 69negsubd 11515 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)))
7170eqcomd 2735 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)))
7271mpteq2dva 5195 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))))
7314, 52readdcld 11179 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
7473rexrd 11200 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝑋) ∈ ℝ*)
7574adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) ∈ ℝ*)
7622, 52readdcld 11179 . . . . . . . . . . . 12 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
7776rexrd 11200 . . . . . . . . . . 11 (𝜑 → (𝐵 + 𝑋) ∈ ℝ*)
7877adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑋) ∈ ℝ*)
7914recnd 11178 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
8052recnd 11178 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
8179, 80addcomd 11352 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝑋) = (𝑋 + 𝐴))
8281adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) = (𝑋 + 𝐴))
8315, 9, 53, 27ltadd2dd 11309 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
8482, 83eqbrtrd 5124 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) < (𝑋 + 𝑠))
859, 30, 53, 32ltadd2dd 11309 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
8622recnd 11178 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
8780, 86addcomd 11352 . . . . . . . . . . . 12 (𝜑 → (𝑋 + 𝐵) = (𝐵 + 𝑋))
8887adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) = (𝐵 + 𝑋))
8985, 88breqtrd 5128 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝐵 + 𝑋))
9075, 78, 54, 84, 89eliood 45469 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))
91 fvres 6859 . . . . . . . . 9 ((𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
9290, 91syl 17 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
9392eqcomd 2735 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)))
9493mpteq2dva 5195 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))))
95 ioosscn 13345 . . . . . . . 8 ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ
9695a1i 11 . . . . . . 7 (𝜑 → ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ)
97 fourierdlem40.fcn . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
98 ioosscn 13345 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℂ
9998a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
10096, 97, 99, 80, 90fourierdlem23 46101 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10194, 100eqeltrd 2828 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
102 0red 11153 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
10314ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1048adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
105 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝐴)
10627adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
107102, 103, 104, 105, 106lelttrd 11308 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 < 𝑠)
108107iftrued 4492 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
109108negeqd 11391 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑌)
110109mpteq2dva 5195 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌))
11156renegcld 11581 . . . . . . . . . 10 (𝜑 → -𝑌 ∈ ℝ)
112111recnd 11178 . . . . . . . . 9 (𝜑 → -𝑌 ∈ ℂ)
113 ssid 3966 . . . . . . . . . 10 ℂ ⊆ ℂ
114113a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
11599, 112, 114constcncfg 45843 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
116115adantr 480 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
117110, 116eqeltrd 2828 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11814rexrd 11200 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
119118ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 ∈ ℝ*)
12023ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ*)
121 0red 11153 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
122 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → ¬ 0 ≤ 𝐴)
12314adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
124 0red 11153 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 0 ∈ ℝ)
125123, 124ltnled 11297 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴))
126122, 125mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 < 0)
127126adantr 480 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 < 0)
128 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → ¬ 𝐵 ≤ 0)
129 0red 11153 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
13022adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ)
131129, 130ltnled 11297 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
132128, 131mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
133132adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
134119, 120, 121, 127, 133eliood 45469 . . . . . . . 8 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ (𝐴(,)𝐵))
13546ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → ¬ 0 ∈ (𝐴(,)𝐵))
136134, 135condan 817 . . . . . . 7 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐵 ≤ 0)
1378adantl 481 . . . . . . . . . . . 12 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
138 0red 11153 . . . . . . . . . . . 12 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
13922ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
14032adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
141 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ 0)
142137, 139, 138, 140, 141ltletrd 11310 . . . . . . . . . . . 12 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 0)
143137, 138, 142ltnsymd 11299 . . . . . . . . . . 11 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ¬ 0 < 𝑠)
144143iffalsed 4495 . . . . . . . . . 10 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
145144negeqd 11391 . . . . . . . . 9 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑊)
146145mpteq2dva 5195 . . . . . . . 8 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊))
14757recnd 11178 . . . . . . . . . . 11 (𝜑𝑊 ∈ ℂ)
148147negcld 11496 . . . . . . . . . 10 (𝜑 → -𝑊 ∈ ℂ)
14999, 148, 114constcncfg 45843 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
150149adantr 480 . . . . . . . 8 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
151146, 150eqeltrd 2828 . . . . . . 7 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
152136, 151syldan 591 . . . . . 6 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
153117, 152pm2.61dan 812 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
154101, 153addcncf 25320 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
15572, 154eqeltrd 2828 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
156 eqid 2729 . . . 4 (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) = (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠))
157 1cnd 11145 . . . . 5 (𝜑 → 1 ∈ ℂ)
158156cdivcncf 24790 . . . . 5 (1 ∈ ℂ → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
159157, 158syl 17 . . . 4 (𝜑 → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
160 velsn 4601 . . . . . . . 8 (𝑠 ∈ {0} ↔ 𝑠 = 0)
16148, 160sylnibr 329 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 ∈ {0})
16262, 161eldifd 3922 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖ {0}))
163162ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
164 dfss3 3932 . . . . 5 ((𝐴(,)𝐵) ⊆ (ℂ ∖ {0}) ↔ ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
165163, 164sylibr 234 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (ℂ ∖ {0}))
1669, 63rereccld 11985 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℝ)
167166recnd 11178 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℂ)
168156, 159, 165, 114, 167cncfmptssg 45842 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
169155, 168mulcncf 25322 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
17067, 169eqeltrd 2828 1 (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3908  wss 3911  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  (,)cioo 13282  [,]cicc 13285  πcpi 16008  cnccncf 24745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744
This theorem is referenced by:  fourierdlem103  46180  fourierdlem104  46181
  Copyright terms: Public domain W3C validator