Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumsupp0 | Structured version Visualization version GIF version |
Description: Finite sum of function values, for a function of finite support. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
fsumsupp0.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumsupp0.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
Ref | Expression |
---|---|
fsumsupp0 | ⊢ (𝜑 → Σ𝑘 ∈ (𝐹 supp 0)(𝐹‘𝑘) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumsupp0.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
2 | 1 | ffnd 6585 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | fsumsupp0.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
4 | 0red 10909 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) | |
5 | suppvalfn 7956 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ∧ 0 ∈ ℝ) → (𝐹 supp 0) = {𝑘 ∈ 𝐴 ∣ (𝐹‘𝑘) ≠ 0}) | |
6 | 2, 3, 4, 5 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐹 supp 0) = {𝑘 ∈ 𝐴 ∣ (𝐹‘𝑘) ≠ 0}) |
7 | ssrab2 4009 | . . 3 ⊢ {𝑘 ∈ 𝐴 ∣ (𝐹‘𝑘) ≠ 0} ⊆ 𝐴 | |
8 | 6, 7 | eqsstrdi 3971 | . 2 ⊢ (𝜑 → (𝐹 supp 0) ⊆ 𝐴) |
9 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐹 supp 0)) → 𝐹:𝐴⟶ℂ) |
10 | 8 | sselda 3917 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐹 supp 0)) → 𝑘 ∈ 𝐴) |
11 | 9, 10 | ffvelrnd 6944 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐹 supp 0)) → (𝐹‘𝑘) ∈ ℂ) |
12 | eldifi 4057 | . . . . . . . 8 ⊢ (𝑘 ∈ (𝐴 ∖ (𝐹 supp 0)) → 𝑘 ∈ 𝐴) | |
13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝑘 ∈ (𝐴 ∖ (𝐹 supp 0)) ∧ ¬ (𝐹‘𝑘) = 0) → 𝑘 ∈ 𝐴) |
14 | neqne 2950 | . . . . . . . 8 ⊢ (¬ (𝐹‘𝑘) = 0 → (𝐹‘𝑘) ≠ 0) | |
15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝑘 ∈ (𝐴 ∖ (𝐹 supp 0)) ∧ ¬ (𝐹‘𝑘) = 0) → (𝐹‘𝑘) ≠ 0) |
16 | 13, 15 | jca 511 | . . . . . 6 ⊢ ((𝑘 ∈ (𝐴 ∖ (𝐹 supp 0)) ∧ ¬ (𝐹‘𝑘) = 0) → (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 0)) |
17 | rabid 3304 | . . . . . 6 ⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ (𝐹‘𝑘) ≠ 0} ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 0)) | |
18 | 16, 17 | sylibr 233 | . . . . 5 ⊢ ((𝑘 ∈ (𝐴 ∖ (𝐹 supp 0)) ∧ ¬ (𝐹‘𝑘) = 0) → 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ (𝐹‘𝑘) ≠ 0}) |
19 | 18 | adantll 710 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 0))) ∧ ¬ (𝐹‘𝑘) = 0) → 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ (𝐹‘𝑘) ≠ 0}) |
20 | 6 | eleq2d 2824 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ (𝐹 supp 0) ↔ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ (𝐹‘𝑘) ≠ 0})) |
21 | 20 | ad2antrr 722 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 0))) ∧ ¬ (𝐹‘𝑘) = 0) → (𝑘 ∈ (𝐹 supp 0) ↔ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ (𝐹‘𝑘) ≠ 0})) |
22 | 19, 21 | mpbird 256 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 0))) ∧ ¬ (𝐹‘𝑘) = 0) → 𝑘 ∈ (𝐹 supp 0)) |
23 | eldifn 4058 | . . . 4 ⊢ (𝑘 ∈ (𝐴 ∖ (𝐹 supp 0)) → ¬ 𝑘 ∈ (𝐹 supp 0)) | |
24 | 23 | ad2antlr 723 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 0))) ∧ ¬ (𝐹‘𝑘) = 0) → ¬ 𝑘 ∈ (𝐹 supp 0)) |
25 | 22, 24 | condan 814 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 0))) → (𝐹‘𝑘) = 0) |
26 | 8, 11, 25, 3 | fsumss 15365 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝐹 supp 0)(𝐹‘𝑘) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 ∖ cdif 3880 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 Fincfn 8691 ℂcc 10800 ℝcr 10801 0cc0 10802 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 |
This theorem is referenced by: rrxtopnfi 43718 |
Copyright terms: Public domain | W3C validator |