![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumsupp0 | Structured version Visualization version GIF version |
Description: Finite sum of function values, for a function of finite support. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
fsumsupp0.a | β’ (π β π΄ β Fin) |
fsumsupp0.f | β’ (π β πΉ:π΄βΆβ) |
Ref | Expression |
---|---|
fsumsupp0 | β’ (π β Ξ£π β (πΉ supp 0)(πΉβπ) = Ξ£π β π΄ (πΉβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumsupp0.f | . . . . 5 β’ (π β πΉ:π΄βΆβ) | |
2 | 1 | ffnd 6718 | . . . 4 β’ (π β πΉ Fn π΄) |
3 | fsumsupp0.a | . . . 4 β’ (π β π΄ β Fin) | |
4 | 0red 11216 | . . . 4 β’ (π β 0 β β) | |
5 | suppvalfn 8153 | . . . 4 β’ ((πΉ Fn π΄ β§ π΄ β Fin β§ 0 β β) β (πΉ supp 0) = {π β π΄ β£ (πΉβπ) β 0}) | |
6 | 2, 3, 4, 5 | syl3anc 1371 | . . 3 β’ (π β (πΉ supp 0) = {π β π΄ β£ (πΉβπ) β 0}) |
7 | ssrab2 4077 | . . 3 β’ {π β π΄ β£ (πΉβπ) β 0} β π΄ | |
8 | 6, 7 | eqsstrdi 4036 | . 2 β’ (π β (πΉ supp 0) β π΄) |
9 | 1 | adantr 481 | . . 3 β’ ((π β§ π β (πΉ supp 0)) β πΉ:π΄βΆβ) |
10 | 8 | sselda 3982 | . . 3 β’ ((π β§ π β (πΉ supp 0)) β π β π΄) |
11 | 9, 10 | ffvelcdmd 7087 | . 2 β’ ((π β§ π β (πΉ supp 0)) β (πΉβπ) β β) |
12 | eldifi 4126 | . . . . . . . 8 β’ (π β (π΄ β (πΉ supp 0)) β π β π΄) | |
13 | 12 | adantr 481 | . . . . . . 7 β’ ((π β (π΄ β (πΉ supp 0)) β§ Β¬ (πΉβπ) = 0) β π β π΄) |
14 | neqne 2948 | . . . . . . . 8 β’ (Β¬ (πΉβπ) = 0 β (πΉβπ) β 0) | |
15 | 14 | adantl 482 | . . . . . . 7 β’ ((π β (π΄ β (πΉ supp 0)) β§ Β¬ (πΉβπ) = 0) β (πΉβπ) β 0) |
16 | 13, 15 | jca 512 | . . . . . 6 β’ ((π β (π΄ β (πΉ supp 0)) β§ Β¬ (πΉβπ) = 0) β (π β π΄ β§ (πΉβπ) β 0)) |
17 | rabid 3452 | . . . . . 6 β’ (π β {π β π΄ β£ (πΉβπ) β 0} β (π β π΄ β§ (πΉβπ) β 0)) | |
18 | 16, 17 | sylibr 233 | . . . . 5 β’ ((π β (π΄ β (πΉ supp 0)) β§ Β¬ (πΉβπ) = 0) β π β {π β π΄ β£ (πΉβπ) β 0}) |
19 | 18 | adantll 712 | . . . 4 β’ (((π β§ π β (π΄ β (πΉ supp 0))) β§ Β¬ (πΉβπ) = 0) β π β {π β π΄ β£ (πΉβπ) β 0}) |
20 | 6 | eleq2d 2819 | . . . . 5 β’ (π β (π β (πΉ supp 0) β π β {π β π΄ β£ (πΉβπ) β 0})) |
21 | 20 | ad2antrr 724 | . . . 4 β’ (((π β§ π β (π΄ β (πΉ supp 0))) β§ Β¬ (πΉβπ) = 0) β (π β (πΉ supp 0) β π β {π β π΄ β£ (πΉβπ) β 0})) |
22 | 19, 21 | mpbird 256 | . . 3 β’ (((π β§ π β (π΄ β (πΉ supp 0))) β§ Β¬ (πΉβπ) = 0) β π β (πΉ supp 0)) |
23 | eldifn 4127 | . . . 4 β’ (π β (π΄ β (πΉ supp 0)) β Β¬ π β (πΉ supp 0)) | |
24 | 23 | ad2antlr 725 | . . 3 β’ (((π β§ π β (π΄ β (πΉ supp 0))) β§ Β¬ (πΉβπ) = 0) β Β¬ π β (πΉ supp 0)) |
25 | 22, 24 | condan 816 | . 2 β’ ((π β§ π β (π΄ β (πΉ supp 0))) β (πΉβπ) = 0) |
26 | 8, 11, 25, 3 | fsumss 15670 | 1 β’ (π β Ξ£π β (πΉ supp 0)(πΉβπ) = Ξ£π β π΄ (πΉβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 {crab 3432 β cdif 3945 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7408 supp csupp 8145 Fincfn 8938 βcc 11107 βcr 11108 0cc0 11109 Ξ£csu 15631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-sum 15632 |
This theorem is referenced by: rrxtopnfi 44993 |
Copyright terms: Public domain | W3C validator |