Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem78 Structured version   Visualization version   GIF version

Theorem fourierdlem78 42826
Description: 𝐺 is continuous when restricted on an interval not containing 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem78.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem78.a (𝜑𝐴 ∈ (-π[,]π))
fourierdlem78.b (𝜑𝐵 ∈ (-π[,]π))
fourierdlem78.x (𝜑𝑋 ∈ ℝ)
fourierdlem78.nxelab (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem78.fcn (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
fourierdlem78.y (𝜑𝑌 ∈ ℝ)
fourierdlem78.w (𝜑𝑊 ∈ ℝ)
fourierdlem78.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem78.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem78.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem78.n (𝜑𝑁 ∈ ℝ)
fourierdlem78.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
fourierdlem78.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
Assertion
Ref Expression
fourierdlem78 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐹,𝑠   𝑁,𝑠   𝑊,𝑠   𝑋,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝑈(𝑠)   𝐺(𝑠)   𝐻(𝑠)   𝐾(𝑠)

Proof of Theorem fourierdlem78
StepHypRef Expression
1 fourierdlem78.g . . . . 5 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
21a1i 11 . . . 4 (𝜑𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))))
32reseq1d 5817 . . 3 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) ↾ (𝐴(,)𝐵)))
4 pire 25051 . . . . . . . . 9 π ∈ ℝ
54renegcli 10936 . . . . . . . 8 -π ∈ ℝ
65a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ∈ ℝ)
74a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → π ∈ ℝ)
8 elioore 12756 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
98adantl 485 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
105a1i 11 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
114a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℝ)
1210, 11iccssred 12812 . . . . . . . . . . 11 (𝜑 → (-π[,]π) ⊆ ℝ)
13 fourierdlem78.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (-π[,]π))
1412, 13sseldd 3916 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1514adantr 484 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
165, 4elicc2i 12791 . . . . . . . . . . . 12 (𝐴 ∈ (-π[,]π) ↔ (𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π))
1716simp2bi 1143 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → -π ≤ 𝐴)
1813, 17syl 17 . . . . . . . . . 10 (𝜑 → -π ≤ 𝐴)
1918adantr 484 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝐴)
2015rexrd 10680 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
21 fourierdlem78.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (-π[,]π))
2212, 21sseldd 3916 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2322rexrd 10680 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
2423adantr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
25 simpr 488 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
26 ioogtlb 42132 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2720, 24, 25, 26syl3anc 1368 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
286, 15, 9, 19, 27lelttrd 10787 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π < 𝑠)
296, 9, 28ltled 10777 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝑠)
3022adantr 484 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
31 iooltub 42147 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
3220, 24, 25, 31syl3anc 1368 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
335, 4elicc2i 12791 . . . . . . . . . . . 12 (𝐵 ∈ (-π[,]π) ↔ (𝐵 ∈ ℝ ∧ -π ≤ 𝐵𝐵 ≤ π))
3433simp3bi 1144 . . . . . . . . . . 11 (𝐵 ∈ (-π[,]π) → 𝐵 ≤ π)
3521, 34syl 17 . . . . . . . . . 10 (𝜑𝐵 ≤ π)
3635adantr 484 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ π)
379, 30, 7, 32, 36ltletrd 10789 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < π)
389, 7, 37ltled 10777 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≤ π)
396, 7, 9, 29, 38eliccd 42141 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
4039ex 416 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (-π[,]π)))
4140ssrdv 3921 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
4241resmptd 5875 . . 3 (𝜑 → ((𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))))
433, 42eqtrd 2833 . 2 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))))
44 0red 10633 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
45 fourierdlem78.f . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
4645adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
47 fourierdlem78.x . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ℝ)
4847adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
4948, 9readdcld 10659 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
5046, 49ffvelrnd 6829 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
51 fourierdlem78.y . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ)
52 fourierdlem78.w . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ ℝ)
5351, 52ifcld 4470 . . . . . . . . . . . . . 14 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5453adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5550, 54resubcld 11057 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
56 eleq1 2877 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
5756biimpac 482 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
5857adantll 713 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
59 fourierdlem78.nxelab . . . . . . . . . . . . . . 15 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
6059ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
6158, 60pm2.65da 816 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
6261neqned 2994 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
6355, 9, 62redivcld 11457 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) ∈ ℝ)
6444, 63ifcld 4470 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
65 fourierdlem78.h . . . . . . . . . . 11 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6665fvmpt2 6756 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6739, 64, 66syl2anc 587 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6867, 64eqeltrd 2890 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) ∈ ℝ)
69 1red 10631 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
70 2re 11699 . . . . . . . . . . . . . 14 2 ∈ ℝ
7170a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
729rehalfcld 11872 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
7372resincld 15488 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
7471, 73remulcld 10660 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
7571recnd 10658 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
7673recnd 10658 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
77 2ne0 11729 . . . . . . . . . . . . . 14 2 ≠ 0
7877a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
79 fourierdlem44 42793 . . . . . . . . . . . . . 14 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
8039, 62, 79syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
8175, 76, 78, 80mulne0d 11281 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
829, 74, 81redivcld 11457 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
8369, 82ifcld 4470 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
84 fourierdlem78.k . . . . . . . . . . 11 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8584fvmpt2 6756 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8639, 83, 85syl2anc 587 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8786, 83eqeltrd 2890 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) ∈ ℝ)
8868, 87remulcld 10660 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
89 fourierdlem78.u . . . . . . . 8 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
9089fvmpt2 6756 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
9139, 88, 90syl2anc 587 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
9291, 88eqeltrd 2890 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑈𝑠) ∈ ℝ)
93 fourierdlem78.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
9493adantr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℝ)
9571, 78rereccld 11456 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℝ)
9694, 95readdcld 10659 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑁 + (1 / 2)) ∈ ℝ)
9796, 9remulcld 10660 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑠) ∈ ℝ)
9897resincld 15488 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘((𝑁 + (1 / 2)) · 𝑠)) ∈ ℝ)
99 fourierdlem78.s . . . . . . . 8 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
10099fvmpt2 6756 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑁 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
10139, 98, 100syl2anc 587 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑆𝑠) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
102101, 98eqeltrd 2890 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑆𝑠) ∈ ℝ)
10392, 102remulcld 10660 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
104 eqid 2798 . . . 4 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠)))
105103, 104fmptd 6855 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))):(𝐴(,)𝐵)⟶ℝ)
106 ax-resscn 10583 . . . . 5 ℝ ⊆ ℂ
107106a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
10891mpteq2dva 5125 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑈𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))))
10961iffalsed 4436 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
11055recnd 10658 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
1119recnd 10658 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
112110, 111, 62divrecd 11408 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
11367, 109, 1123eqtrd 2837 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
114113mpteq2dva 5125 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))))
11550recnd 10658 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
11654recnd 10658 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
117115, 116negsubd 10992 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)))
118117eqcomd 2804 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)))
119118mpteq2dva 5125 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))))
12014, 47readdcld 10659 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
121120rexrd 10680 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 + 𝑋) ∈ ℝ*)
122121adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) ∈ ℝ*)
12322, 47readdcld 10659 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
124123rexrd 10680 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 + 𝑋) ∈ ℝ*)
125124adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑋) ∈ ℝ*)
12614recnd 10658 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℂ)
12747recnd 10658 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℂ)
128126, 127addcomd 10831 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 + 𝑋) = (𝑋 + 𝐴))
129128adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) = (𝑋 + 𝐴))
13015, 9, 48, 27ltadd2dd 10788 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
131129, 130eqbrtrd 5052 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) < (𝑋 + 𝑠))
1329, 30, 48, 32ltadd2dd 10788 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
13322recnd 10658 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℂ)
134127, 133addcomd 10831 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋 + 𝐵) = (𝐵 + 𝑋))
135134adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) = (𝐵 + 𝑋))
136132, 135breqtrd 5056 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝐵 + 𝑋))
137122, 125, 49, 131, 136eliood 42135 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))
138 fvres 6664 . . . . . . . . . . . . . . 15 ((𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
139137, 138syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
140139eqcomd 2804 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)))
141140mpteq2dva 5125 . . . . . . . . . . . 12 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))))
142 ioosscn 12787 . . . . . . . . . . . . . 14 ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ
143142a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ)
144 fourierdlem78.fcn . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
145 ioosscn 12787 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ℂ
146145a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
147143, 144, 146, 127, 137fourierdlem23 42772 . . . . . . . . . . . 12 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
148141, 147eqeltrd 2890 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
149 0red 10633 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
15014ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1518adantl 485 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
152 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝐴)
15327adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
154149, 150, 151, 152, 153lelttrd 10787 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 < 𝑠)
155154iftrued 4433 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
156155negeqd 10869 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑌)
157156mpteq2dva 5125 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌))
15851renegcld 11056 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑌 ∈ ℝ)
159158recnd 10658 . . . . . . . . . . . . . . 15 (𝜑 → -𝑌 ∈ ℂ)
160 ssid 3937 . . . . . . . . . . . . . . . 16 ℂ ⊆ ℂ
161160a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
162146, 159, 161constcncfg 42514 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
163162adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
164157, 163eqeltrd 2890 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
165 simpl 486 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝜑)
16614rexrd 10680 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
167166ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 ∈ ℝ*)
16823ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ*)
169 0red 10633 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
170 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → ¬ 0 ≤ 𝐴)
17114adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
172 0red 10633 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 0 ∈ ℝ)
173171, 172ltnled 10776 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴))
174170, 173mpbird 260 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 < 0)
175174adantr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 < 0)
176 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → ¬ 𝐵 ≤ 0)
177 0red 10633 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
17822adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ)
179177, 178ltnled 10776 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
180176, 179mpbird 260 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
181180adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
182167, 168, 169, 175, 181eliood 42135 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ (𝐴(,)𝐵))
18359ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → ¬ 0 ∈ (𝐴(,)𝐵))
184182, 183condan 817 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐵 ≤ 0)
1858adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
186 0red 10633 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
18722ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
18832adantlr 714 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
189 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ 0)
190185, 187, 186, 188, 189ltletrd 10789 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 0)
191185, 186, 190ltnsymd 10778 . . . . . . . . . . . . . . . . 17 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ¬ 0 < 𝑠)
192191iffalsed 4436 . . . . . . . . . . . . . . . 16 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
193192negeqd 10869 . . . . . . . . . . . . . . 15 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑊)
194193mpteq2dva 5125 . . . . . . . . . . . . . 14 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊))
19552recnd 10658 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ ℂ)
196195negcld 10973 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑊 ∈ ℂ)
197146, 196, 161constcncfg 42514 . . . . . . . . . . . . . . 15 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
198197adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
199194, 198eqeltrd 2890 . . . . . . . . . . . . 13 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
200165, 184, 199syl2anc 587 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
201164, 200pm2.61dan 812 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
202148, 201addcncf 24048 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
203119, 202eqeltrd 2890 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
204 eqid 2798 . . . . . . . . . 10 (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) = (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠))
205 1cnd 10625 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
206204cdivcncf 23526 . . . . . . . . . . 11 (1 ∈ ℂ → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
207205, 206syl 17 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
208 velsn 4541 . . . . . . . . . . . . . 14 (𝑠 ∈ {0} ↔ 𝑠 = 0)
20961, 208sylnibr 332 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 ∈ {0})
210111, 209eldifd 3892 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖ {0}))
211210ralrimiva 3149 . . . . . . . . . . 11 (𝜑 → ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
212 dfss3 3903 . . . . . . . . . . 11 ((𝐴(,)𝐵) ⊆ (ℂ ∖ {0}) ↔ ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
213211, 212sylibr 237 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (ℂ ∖ {0}))
2149, 62rereccld 11456 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℝ)
215214recnd 10658 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℂ)
216204, 207, 213, 161, 215cncfmptssg 42513 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
217203, 216mulcncf 24050 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
218114, 217eqeltrd 2890 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
21961iffalsed 4436 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
22074recnd 10658 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
221111, 220, 81divrecd 11408 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = (𝑠 · (1 / (2 · (sin‘(𝑠 / 2))))))
22286, 219, 2213eqtrd 2837 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = (𝑠 · (1 / (2 · (sin‘(𝑠 / 2))))))
223222mpteq2dva 5125 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 · (1 / (2 · (sin‘(𝑠 / 2)))))))
224219, 221eqtr2d 2834 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 · (1 / (2 · (sin‘(𝑠 / 2))))) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
225224mpteq2dva 5125 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 · (1 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
226 eqid 2798 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
227 cncfss 23504 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
228106, 160, 227mp2an 691 . . . . . . . . . . 11 ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ)
229226fourierdlem62 42810 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((-π[,]π)–cn→ℝ)
230229a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((-π[,]π)–cn→ℝ))
231228, 230sseldi 3913 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((-π[,]π)–cn→ℂ))
23283recnd 10658 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
233226, 231, 41, 161, 232cncfmptssg 42513 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
234225, 233eqeltrd 2890 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 · (1 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
235223, 234eqeltrd 2890 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
236218, 235mulcncf 24050 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
237108, 236eqeltrd 2890 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑈𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
238101mpteq2dva 5125 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑆𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
239 sincn 25039 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
240239a1i 11 . . . . . . 7 (𝜑 → sin ∈ (ℂ–cn→ℂ))
241 halfre 11839 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
242241a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
24393, 242readdcld 10659 . . . . . . . . . 10 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
244243recnd 10658 . . . . . . . . 9 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
245146, 244, 161constcncfg 42514 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
246146, 161idcncfg 42515 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) ∈ ((𝐴(,)𝐵)–cn→ℂ))
247245, 246mulcncf 24050 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
248240, 247cncfmpt1f 23519 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
249238, 248eqeltrd 2890 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑆𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
250237, 249mulcncf 24050 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
251 cncffvrn 23503 . . . 4 ((ℝ ⊆ ℂ ∧ (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))):(𝐴(,)𝐵)⟶ℝ))
252107, 250, 251syl2anc 587 . . 3 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))):(𝐴(,)𝐵)⟶ℝ))
253105, 252mpbird 260 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℝ))
25443, 253eqeltrd 2890 1 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  wss 3881  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  2c2 11680  (,)cioo 12726  [,]cicc 12729  sincsin 15409  πcpi 15412  cnccncf 23481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-t1 21919  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  fourierdlem88  42836
  Copyright terms: Public domain W3C validator