Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem78 Structured version   Visualization version   GIF version

Theorem fourierdlem78 43725
Description: 𝐺 is continuous when restricted on an interval not containing 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem78.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem78.a (𝜑𝐴 ∈ (-π[,]π))
fourierdlem78.b (𝜑𝐵 ∈ (-π[,]π))
fourierdlem78.x (𝜑𝑋 ∈ ℝ)
fourierdlem78.nxelab (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem78.fcn (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
fourierdlem78.y (𝜑𝑌 ∈ ℝ)
fourierdlem78.w (𝜑𝑊 ∈ ℝ)
fourierdlem78.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem78.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem78.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem78.n (𝜑𝑁 ∈ ℝ)
fourierdlem78.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
fourierdlem78.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
Assertion
Ref Expression
fourierdlem78 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐹,𝑠   𝑁,𝑠   𝑊,𝑠   𝑋,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝑈(𝑠)   𝐺(𝑠)   𝐻(𝑠)   𝐾(𝑠)

Proof of Theorem fourierdlem78
StepHypRef Expression
1 fourierdlem78.g . . . . 5 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
21a1i 11 . . . 4 (𝜑𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))))
32reseq1d 5890 . . 3 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) ↾ (𝐴(,)𝐵)))
4 pire 25615 . . . . . . . . 9 π ∈ ℝ
54renegcli 11282 . . . . . . . 8 -π ∈ ℝ
65a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ∈ ℝ)
74a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → π ∈ ℝ)
8 elioore 13109 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
98adantl 482 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
105a1i 11 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
114a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℝ)
1210, 11iccssred 13166 . . . . . . . . . . 11 (𝜑 → (-π[,]π) ⊆ ℝ)
13 fourierdlem78.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (-π[,]π))
1412, 13sseldd 3922 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1514adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
165, 4elicc2i 13145 . . . . . . . . . . . 12 (𝐴 ∈ (-π[,]π) ↔ (𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π))
1716simp2bi 1145 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → -π ≤ 𝐴)
1813, 17syl 17 . . . . . . . . . 10 (𝜑 → -π ≤ 𝐴)
1918adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝐴)
2015rexrd 11025 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
21 fourierdlem78.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (-π[,]π))
2212, 21sseldd 3922 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2322rexrd 11025 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
2423adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
25 simpr 485 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
26 ioogtlb 43033 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2720, 24, 25, 26syl3anc 1370 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
286, 15, 9, 19, 27lelttrd 11133 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π < 𝑠)
296, 9, 28ltled 11123 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝑠)
3022adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
31 iooltub 43048 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
3220, 24, 25, 31syl3anc 1370 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
335, 4elicc2i 13145 . . . . . . . . . . . 12 (𝐵 ∈ (-π[,]π) ↔ (𝐵 ∈ ℝ ∧ -π ≤ 𝐵𝐵 ≤ π))
3433simp3bi 1146 . . . . . . . . . . 11 (𝐵 ∈ (-π[,]π) → 𝐵 ≤ π)
3521, 34syl 17 . . . . . . . . . 10 (𝜑𝐵 ≤ π)
3635adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ π)
379, 30, 7, 32, 36ltletrd 11135 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < π)
389, 7, 37ltled 11123 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≤ π)
396, 7, 9, 29, 38eliccd 43042 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
4039ex 413 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (-π[,]π)))
4140ssrdv 3927 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
4241resmptd 5948 . . 3 (𝜑 → ((𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))))
433, 42eqtrd 2778 . 2 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))))
44 0red 10978 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
45 fourierdlem78.f . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
4645adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
47 fourierdlem78.x . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ℝ)
4847adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
4948, 9readdcld 11004 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
5046, 49ffvelrnd 6962 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
51 fourierdlem78.y . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ)
52 fourierdlem78.w . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ ℝ)
5351, 52ifcld 4505 . . . . . . . . . . . . . 14 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5453adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5550, 54resubcld 11403 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
56 eleq1 2826 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
5756biimpac 479 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
5857adantll 711 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
59 fourierdlem78.nxelab . . . . . . . . . . . . . . 15 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
6059ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
6158, 60pm2.65da 814 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
6261neqned 2950 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
6355, 9, 62redivcld 11803 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) ∈ ℝ)
6444, 63ifcld 4505 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
65 fourierdlem78.h . . . . . . . . . . 11 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6665fvmpt2 6886 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6739, 64, 66syl2anc 584 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6867, 64eqeltrd 2839 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) ∈ ℝ)
69 1red 10976 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
70 2re 12047 . . . . . . . . . . . . . 14 2 ∈ ℝ
7170a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
729rehalfcld 12220 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
7372resincld 15852 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
7471, 73remulcld 11005 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
7571recnd 11003 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
7673recnd 11003 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
77 2ne0 12077 . . . . . . . . . . . . . 14 2 ≠ 0
7877a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
79 fourierdlem44 43692 . . . . . . . . . . . . . 14 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
8039, 62, 79syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
8175, 76, 78, 80mulne0d 11627 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
829, 74, 81redivcld 11803 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
8369, 82ifcld 4505 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
84 fourierdlem78.k . . . . . . . . . . 11 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8584fvmpt2 6886 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8639, 83, 85syl2anc 584 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8786, 83eqeltrd 2839 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) ∈ ℝ)
8868, 87remulcld 11005 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
89 fourierdlem78.u . . . . . . . 8 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
9089fvmpt2 6886 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
9139, 88, 90syl2anc 584 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
9291, 88eqeltrd 2839 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑈𝑠) ∈ ℝ)
93 fourierdlem78.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
9493adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℝ)
9571, 78rereccld 11802 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℝ)
9694, 95readdcld 11004 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑁 + (1 / 2)) ∈ ℝ)
9796, 9remulcld 11005 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑠) ∈ ℝ)
9897resincld 15852 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘((𝑁 + (1 / 2)) · 𝑠)) ∈ ℝ)
99 fourierdlem78.s . . . . . . . 8 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
10099fvmpt2 6886 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑁 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
10139, 98, 100syl2anc 584 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑆𝑠) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
102101, 98eqeltrd 2839 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑆𝑠) ∈ ℝ)
10392, 102remulcld 11005 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
104 eqid 2738 . . . 4 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠)))
105103, 104fmptd 6988 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))):(𝐴(,)𝐵)⟶ℝ)
106 ax-resscn 10928 . . . . 5 ℝ ⊆ ℂ
107106a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
10891mpteq2dva 5174 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑈𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))))
10961iffalsed 4470 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
11055recnd 11003 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
1119recnd 11003 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
112110, 111, 62divrecd 11754 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
11367, 109, 1123eqtrd 2782 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
114113mpteq2dva 5174 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))))
11550recnd 11003 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
11654recnd 11003 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
117115, 116negsubd 11338 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)))
118117eqcomd 2744 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)))
119118mpteq2dva 5174 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))))
12014, 47readdcld 11004 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
121120rexrd 11025 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 + 𝑋) ∈ ℝ*)
122121adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) ∈ ℝ*)
12322, 47readdcld 11004 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
124123rexrd 11025 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 + 𝑋) ∈ ℝ*)
125124adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑋) ∈ ℝ*)
12614recnd 11003 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℂ)
12747recnd 11003 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℂ)
128126, 127addcomd 11177 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 + 𝑋) = (𝑋 + 𝐴))
129128adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) = (𝑋 + 𝐴))
13015, 9, 48, 27ltadd2dd 11134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
131129, 130eqbrtrd 5096 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) < (𝑋 + 𝑠))
1329, 30, 48, 32ltadd2dd 11134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
13322recnd 11003 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℂ)
134127, 133addcomd 11177 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋 + 𝐵) = (𝐵 + 𝑋))
135134adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) = (𝐵 + 𝑋))
136132, 135breqtrd 5100 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝐵 + 𝑋))
137122, 125, 49, 131, 136eliood 43036 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))
138 fvres 6793 . . . . . . . . . . . . . . 15 ((𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
139137, 138syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
140139eqcomd 2744 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)))
141140mpteq2dva 5174 . . . . . . . . . . . 12 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))))
142 ioosscn 13141 . . . . . . . . . . . . . 14 ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ
143142a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ)
144 fourierdlem78.fcn . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
145 ioosscn 13141 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ℂ
146145a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
147143, 144, 146, 127, 137fourierdlem23 43671 . . . . . . . . . . . 12 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
148141, 147eqeltrd 2839 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
149 0red 10978 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
15014ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1518adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
152 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝐴)
15327adantlr 712 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
154149, 150, 151, 152, 153lelttrd 11133 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 < 𝑠)
155154iftrued 4467 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
156155negeqd 11215 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑌)
157156mpteq2dva 5174 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌))
15851renegcld 11402 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑌 ∈ ℝ)
159158recnd 11003 . . . . . . . . . . . . . . 15 (𝜑 → -𝑌 ∈ ℂ)
160 ssid 3943 . . . . . . . . . . . . . . . 16 ℂ ⊆ ℂ
161160a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
162146, 159, 161constcncfg 43413 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
163162adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
164157, 163eqeltrd 2839 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
165 simpl 483 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝜑)
16614rexrd 11025 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
167166ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 ∈ ℝ*)
16823ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ*)
169 0red 10978 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
170 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → ¬ 0 ≤ 𝐴)
17114adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
172 0red 10978 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 0 ∈ ℝ)
173171, 172ltnled 11122 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴))
174170, 173mpbird 256 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 < 0)
175174adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 < 0)
176 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → ¬ 𝐵 ≤ 0)
177 0red 10978 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
17822adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ)
179177, 178ltnled 11122 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
180176, 179mpbird 256 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
181180adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
182167, 168, 169, 175, 181eliood 43036 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ (𝐴(,)𝐵))
18359ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → ¬ 0 ∈ (𝐴(,)𝐵))
184182, 183condan 815 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐵 ≤ 0)
1858adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
186 0red 10978 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
18722ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
18832adantlr 712 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
189 simplr 766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ 0)
190185, 187, 186, 188, 189ltletrd 11135 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 0)
191185, 186, 190ltnsymd 11124 . . . . . . . . . . . . . . . . 17 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ¬ 0 < 𝑠)
192191iffalsed 4470 . . . . . . . . . . . . . . . 16 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
193192negeqd 11215 . . . . . . . . . . . . . . 15 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑊)
194193mpteq2dva 5174 . . . . . . . . . . . . . 14 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊))
19552recnd 11003 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ ℂ)
196195negcld 11319 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑊 ∈ ℂ)
197146, 196, 161constcncfg 43413 . . . . . . . . . . . . . . 15 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
198197adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
199194, 198eqeltrd 2839 . . . . . . . . . . . . 13 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
200165, 184, 199syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
201164, 200pm2.61dan 810 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
202148, 201addcncf 24608 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
203119, 202eqeltrd 2839 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
204 eqid 2738 . . . . . . . . . 10 (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) = (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠))
205 1cnd 10970 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
206204cdivcncf 24084 . . . . . . . . . . 11 (1 ∈ ℂ → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
207205, 206syl 17 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
208 velsn 4577 . . . . . . . . . . . . . 14 (𝑠 ∈ {0} ↔ 𝑠 = 0)
20961, 208sylnibr 329 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 ∈ {0})
210111, 209eldifd 3898 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖ {0}))
211210ralrimiva 3103 . . . . . . . . . . 11 (𝜑 → ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
212 dfss3 3909 . . . . . . . . . . 11 ((𝐴(,)𝐵) ⊆ (ℂ ∖ {0}) ↔ ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
213211, 212sylibr 233 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (ℂ ∖ {0}))
2149, 62rereccld 11802 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℝ)
215214recnd 11003 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℂ)
216204, 207, 213, 161, 215cncfmptssg 43412 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
217203, 216mulcncf 24610 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
218114, 217eqeltrd 2839 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
21961iffalsed 4470 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
22074recnd 11003 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
221111, 220, 81divrecd 11754 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = (𝑠 · (1 / (2 · (sin‘(𝑠 / 2))))))
22286, 219, 2213eqtrd 2782 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = (𝑠 · (1 / (2 · (sin‘(𝑠 / 2))))))
223222mpteq2dva 5174 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 · (1 / (2 · (sin‘(𝑠 / 2)))))))
224219, 221eqtr2d 2779 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 · (1 / (2 · (sin‘(𝑠 / 2))))) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
225224mpteq2dva 5174 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 · (1 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
226 eqid 2738 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
227 cncfss 24062 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
228106, 160, 227mp2an 689 . . . . . . . . . . 11 ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ)
229226fourierdlem62 43709 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((-π[,]π)–cn→ℝ)
230229a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((-π[,]π)–cn→ℝ))
231228, 230sselid 3919 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((-π[,]π)–cn→ℂ))
23283recnd 11003 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
233226, 231, 41, 161, 232cncfmptssg 43412 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
234225, 233eqeltrd 2839 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 · (1 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
235223, 234eqeltrd 2839 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
236218, 235mulcncf 24610 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
237108, 236eqeltrd 2839 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑈𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
238101mpteq2dva 5174 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑆𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
239 sincn 25603 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
240239a1i 11 . . . . . . 7 (𝜑 → sin ∈ (ℂ–cn→ℂ))
241 halfre 12187 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
242241a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
24393, 242readdcld 11004 . . . . . . . . . 10 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
244243recnd 11003 . . . . . . . . 9 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
245146, 244, 161constcncfg 43413 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
246146, 161idcncfg 43414 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) ∈ ((𝐴(,)𝐵)–cn→ℂ))
247245, 246mulcncf 24610 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
248240, 247cncfmpt1f 24077 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
249238, 248eqeltrd 2839 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑆𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
250237, 249mulcncf 24610 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
251 cncffvrn 24061 . . . 4 ((ℝ ⊆ ℂ ∧ (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))):(𝐴(,)𝐵)⟶ℝ))
252107, 250, 251syl2anc 584 . . 3 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))):(𝐴(,)𝐵)⟶ℝ))
253105, 252mpbird 256 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℝ))
25443, 253eqeltrd 2839 1 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  cdif 3884  wss 3887  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  (,)cioo 13079  [,]cicc 13082  sincsin 15773  πcpi 15776  cnccncf 24039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-t1 22465  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  fourierdlem88  43735
  Copyright terms: Public domain W3C validator