Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem78 Structured version   Visualization version   GIF version

Theorem fourierdlem78 46204
Description: 𝐺 is continuous when restricted on an interval not containing 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem78.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem78.a (𝜑𝐴 ∈ (-π[,]π))
fourierdlem78.b (𝜑𝐵 ∈ (-π[,]π))
fourierdlem78.x (𝜑𝑋 ∈ ℝ)
fourierdlem78.nxelab (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem78.fcn (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
fourierdlem78.y (𝜑𝑌 ∈ ℝ)
fourierdlem78.w (𝜑𝑊 ∈ ℝ)
fourierdlem78.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem78.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem78.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem78.n (𝜑𝑁 ∈ ℝ)
fourierdlem78.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
fourierdlem78.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
Assertion
Ref Expression
fourierdlem78 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐹,𝑠   𝑁,𝑠   𝑊,𝑠   𝑋,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝑈(𝑠)   𝐺(𝑠)   𝐻(𝑠)   𝐾(𝑠)

Proof of Theorem fourierdlem78
StepHypRef Expression
1 fourierdlem78.g . . . . 5 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
21a1i 11 . . . 4 (𝜑𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))))
32reseq1d 5995 . . 3 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) ↾ (𝐴(,)𝐵)))
4 pire 26501 . . . . . . . . 9 π ∈ ℝ
54renegcli 11571 . . . . . . . 8 -π ∈ ℝ
65a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ∈ ℝ)
74a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → π ∈ ℝ)
8 elioore 13418 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
98adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
105a1i 11 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
114a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℝ)
1210, 11iccssred 13475 . . . . . . . . . . 11 (𝜑 → (-π[,]π) ⊆ ℝ)
13 fourierdlem78.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (-π[,]π))
1412, 13sseldd 3983 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1514adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
165, 4elicc2i 13454 . . . . . . . . . . . 12 (𝐴 ∈ (-π[,]π) ↔ (𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π))
1716simp2bi 1146 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → -π ≤ 𝐴)
1813, 17syl 17 . . . . . . . . . 10 (𝜑 → -π ≤ 𝐴)
1918adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝐴)
2015rexrd 11312 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
21 fourierdlem78.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (-π[,]π))
2212, 21sseldd 3983 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2322rexrd 11312 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
2423adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
25 simpr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
26 ioogtlb 45513 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2720, 24, 25, 26syl3anc 1372 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
286, 15, 9, 19, 27lelttrd 11420 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π < 𝑠)
296, 9, 28ltled 11410 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝑠)
3022adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
31 iooltub 45528 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
3220, 24, 25, 31syl3anc 1372 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
335, 4elicc2i 13454 . . . . . . . . . . . 12 (𝐵 ∈ (-π[,]π) ↔ (𝐵 ∈ ℝ ∧ -π ≤ 𝐵𝐵 ≤ π))
3433simp3bi 1147 . . . . . . . . . . 11 (𝐵 ∈ (-π[,]π) → 𝐵 ≤ π)
3521, 34syl 17 . . . . . . . . . 10 (𝜑𝐵 ≤ π)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ π)
379, 30, 7, 32, 36ltletrd 11422 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < π)
389, 7, 37ltled 11410 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≤ π)
396, 7, 9, 29, 38eliccd 45522 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
4039ex 412 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (-π[,]π)))
4140ssrdv 3988 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
4241resmptd 6057 . . 3 (𝜑 → ((𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))))
433, 42eqtrd 2776 . 2 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))))
44 0red 11265 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
45 fourierdlem78.f . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
4645adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
47 fourierdlem78.x . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ℝ)
4847adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
4948, 9readdcld 11291 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
5046, 49ffvelcdmd 7104 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
51 fourierdlem78.y . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ)
52 fourierdlem78.w . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ ℝ)
5351, 52ifcld 4571 . . . . . . . . . . . . . 14 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5453adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5550, 54resubcld 11692 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
56 eleq1 2828 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
5756biimpac 478 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
5857adantll 714 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
59 fourierdlem78.nxelab . . . . . . . . . . . . . . 15 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
6059ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
6158, 60pm2.65da 816 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
6261neqned 2946 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
6355, 9, 62redivcld 12096 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) ∈ ℝ)
6444, 63ifcld 4571 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
65 fourierdlem78.h . . . . . . . . . . 11 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6665fvmpt2 7026 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6739, 64, 66syl2anc 584 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6867, 64eqeltrd 2840 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) ∈ ℝ)
69 1red 11263 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
70 2re 12341 . . . . . . . . . . . . . 14 2 ∈ ℝ
7170a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
729rehalfcld 12515 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
7372resincld 16180 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
7471, 73remulcld 11292 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
7571recnd 11290 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
7673recnd 11290 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
77 2ne0 12371 . . . . . . . . . . . . . 14 2 ≠ 0
7877a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
79 fourierdlem44 46171 . . . . . . . . . . . . . 14 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
8039, 62, 79syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
8175, 76, 78, 80mulne0d 11916 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
829, 74, 81redivcld 12096 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
8369, 82ifcld 4571 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
84 fourierdlem78.k . . . . . . . . . . 11 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8584fvmpt2 7026 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8639, 83, 85syl2anc 584 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8786, 83eqeltrd 2840 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) ∈ ℝ)
8868, 87remulcld 11292 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
89 fourierdlem78.u . . . . . . . 8 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
9089fvmpt2 7026 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
9139, 88, 90syl2anc 584 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
9291, 88eqeltrd 2840 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑈𝑠) ∈ ℝ)
93 fourierdlem78.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
9493adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℝ)
9571, 78rereccld 12095 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℝ)
9694, 95readdcld 11291 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑁 + (1 / 2)) ∈ ℝ)
9796, 9remulcld 11292 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑠) ∈ ℝ)
9897resincld 16180 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘((𝑁 + (1 / 2)) · 𝑠)) ∈ ℝ)
99 fourierdlem78.s . . . . . . . 8 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
10099fvmpt2 7026 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑁 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
10139, 98, 100syl2anc 584 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑆𝑠) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
102101, 98eqeltrd 2840 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑆𝑠) ∈ ℝ)
10392, 102remulcld 11292 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
104 eqid 2736 . . . 4 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠)))
105103, 104fmptd 7133 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))):(𝐴(,)𝐵)⟶ℝ)
106 ax-resscn 11213 . . . . 5 ℝ ⊆ ℂ
107106a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
10891mpteq2dva 5241 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑈𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))))
10961iffalsed 4535 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
11055recnd 11290 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
1119recnd 11290 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
112110, 111, 62divrecd 12047 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
11367, 109, 1123eqtrd 2780 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
114113mpteq2dva 5241 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))))
11550recnd 11290 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
11654recnd 11290 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
117115, 116negsubd 11627 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)))
118117eqcomd 2742 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)))
119118mpteq2dva 5241 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))))
12014, 47readdcld 11291 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
121120rexrd 11312 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 + 𝑋) ∈ ℝ*)
122121adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) ∈ ℝ*)
12322, 47readdcld 11291 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
124123rexrd 11312 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 + 𝑋) ∈ ℝ*)
125124adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑋) ∈ ℝ*)
12614recnd 11290 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℂ)
12747recnd 11290 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℂ)
128126, 127addcomd 11464 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 + 𝑋) = (𝑋 + 𝐴))
129128adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) = (𝑋 + 𝐴))
13015, 9, 48, 27ltadd2dd 11421 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
131129, 130eqbrtrd 5164 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) < (𝑋 + 𝑠))
1329, 30, 48, 32ltadd2dd 11421 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
13322recnd 11290 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℂ)
134127, 133addcomd 11464 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋 + 𝐵) = (𝐵 + 𝑋))
135134adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) = (𝐵 + 𝑋))
136132, 135breqtrd 5168 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝐵 + 𝑋))
137122, 125, 49, 131, 136eliood 45516 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))
138 fvres 6924 . . . . . . . . . . . . . . 15 ((𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
139137, 138syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
140139eqcomd 2742 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)))
141140mpteq2dva 5241 . . . . . . . . . . . 12 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))))
142 ioosscn 13450 . . . . . . . . . . . . . 14 ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ
143142a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ)
144 fourierdlem78.fcn . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
145 ioosscn 13450 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ℂ
146145a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
147143, 144, 146, 127, 137fourierdlem23 46150 . . . . . . . . . . . 12 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
148141, 147eqeltrd 2840 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
149 0red 11265 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
15014ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1518adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
152 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝐴)
15327adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
154149, 150, 151, 152, 153lelttrd 11420 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 < 𝑠)
155154iftrued 4532 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
156155negeqd 11503 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑌)
157156mpteq2dva 5241 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌))
15851renegcld 11691 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑌 ∈ ℝ)
159158recnd 11290 . . . . . . . . . . . . . . 15 (𝜑 → -𝑌 ∈ ℂ)
160 ssid 4005 . . . . . . . . . . . . . . . 16 ℂ ⊆ ℂ
161160a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
162146, 159, 161constcncfg 45892 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
163162adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
164157, 163eqeltrd 2840 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
165 simpl 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝜑)
16614rexrd 11312 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
167166ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 ∈ ℝ*)
16823ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ*)
169 0red 11265 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
170 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → ¬ 0 ≤ 𝐴)
17114adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
172 0red 11265 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 0 ∈ ℝ)
173171, 172ltnled 11409 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴))
174170, 173mpbird 257 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 < 0)
175174adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 < 0)
176 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → ¬ 𝐵 ≤ 0)
177 0red 11265 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
17822adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ)
179177, 178ltnled 11409 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
180176, 179mpbird 257 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
181180adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
182167, 168, 169, 175, 181eliood 45516 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ (𝐴(,)𝐵))
18359ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → ¬ 0 ∈ (𝐴(,)𝐵))
184182, 183condan 817 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐵 ≤ 0)
1858adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
186 0red 11265 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
18722ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
18832adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
189 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ 0)
190185, 187, 186, 188, 189ltletrd 11422 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 0)
191185, 186, 190ltnsymd 11411 . . . . . . . . . . . . . . . . 17 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ¬ 0 < 𝑠)
192191iffalsed 4535 . . . . . . . . . . . . . . . 16 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
193192negeqd 11503 . . . . . . . . . . . . . . 15 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑊)
194193mpteq2dva 5241 . . . . . . . . . . . . . 14 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊))
19552recnd 11290 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ ℂ)
196195negcld 11608 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑊 ∈ ℂ)
197146, 196, 161constcncfg 45892 . . . . . . . . . . . . . . 15 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
198197adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
199194, 198eqeltrd 2840 . . . . . . . . . . . . 13 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
200165, 184, 199syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
201164, 200pm2.61dan 812 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
202148, 201addcncf 25479 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
203119, 202eqeltrd 2840 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
204 eqid 2736 . . . . . . . . . 10 (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) = (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠))
205 1cnd 11257 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
206204cdivcncf 24948 . . . . . . . . . . 11 (1 ∈ ℂ → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
207205, 206syl 17 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
208 velsn 4641 . . . . . . . . . . . . . 14 (𝑠 ∈ {0} ↔ 𝑠 = 0)
20961, 208sylnibr 329 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 ∈ {0})
210111, 209eldifd 3961 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖ {0}))
211210ralrimiva 3145 . . . . . . . . . . 11 (𝜑 → ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
212 dfss3 3971 . . . . . . . . . . 11 ((𝐴(,)𝐵) ⊆ (ℂ ∖ {0}) ↔ ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
213211, 212sylibr 234 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (ℂ ∖ {0}))
2149, 62rereccld 12095 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℝ)
215214recnd 11290 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℂ)
216204, 207, 213, 161, 215cncfmptssg 45891 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
217203, 216mulcncf 25481 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
218114, 217eqeltrd 2840 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
21961iffalsed 4535 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
22074recnd 11290 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
221111, 220, 81divrecd 12047 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = (𝑠 · (1 / (2 · (sin‘(𝑠 / 2))))))
22286, 219, 2213eqtrd 2780 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = (𝑠 · (1 / (2 · (sin‘(𝑠 / 2))))))
223222mpteq2dva 5241 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 · (1 / (2 · (sin‘(𝑠 / 2)))))))
224219, 221eqtr2d 2777 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 · (1 / (2 · (sin‘(𝑠 / 2))))) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
225224mpteq2dva 5241 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 · (1 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
226 eqid 2736 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
227 cncfss 24926 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
228106, 160, 227mp2an 692 . . . . . . . . . . 11 ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ)
229226fourierdlem62 46188 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((-π[,]π)–cn→ℝ)
230229a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((-π[,]π)–cn→ℝ))
231228, 230sselid 3980 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((-π[,]π)–cn→ℂ))
23283recnd 11290 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
233226, 231, 41, 161, 232cncfmptssg 45891 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
234225, 233eqeltrd 2840 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 · (1 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
235223, 234eqeltrd 2840 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
236218, 235mulcncf 25481 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
237108, 236eqeltrd 2840 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑈𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
238101mpteq2dva 5241 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑆𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
239 sincn 26489 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
240239a1i 11 . . . . . . 7 (𝜑 → sin ∈ (ℂ–cn→ℂ))
241 halfre 12481 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
242241a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
24393, 242readdcld 11291 . . . . . . . . . 10 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
244243recnd 11290 . . . . . . . . 9 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
245146, 244, 161constcncfg 45892 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
246146, 161idcncfg 45893 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) ∈ ((𝐴(,)𝐵)–cn→ℂ))
247245, 246mulcncf 25481 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
248240, 247cncfmpt1f 24941 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
249238, 248eqeltrd 2840 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑆𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
250237, 249mulcncf 25481 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
251 cncfcdm 24925 . . . 4 ((ℝ ⊆ ℂ ∧ (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))):(𝐴(,)𝐵)⟶ℝ))
252107, 250, 251syl2anc 584 . . 3 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))):(𝐴(,)𝐵)⟶ℝ))
253105, 252mpbird 257 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℝ))
25443, 253eqeltrd 2840 1 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  cdif 3947  wss 3950  ifcif 4524  {csn 4625   class class class wbr 5142  cmpt 5224  cres 5686  wf 6556  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  *cxr 11295   < clt 11296  cle 11297  cmin 11493  -cneg 11494   / cdiv 11921  2c2 12322  (,)cioo 13388  [,]cicc 13391  sincsin 16100  πcpi 16103  cnccncf 24903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-t1 23323  df-haus 23324  df-cmp 23396  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903
This theorem is referenced by:  fourierdlem88  46214
  Copyright terms: Public domain W3C validator