Proof of Theorem fincygsubgodd
| Step | Hyp | Ref
| Expression |
| 1 | | fincygsubgodd.3 |
. . 3
⊢ 𝐷 = ((♯‘𝐵) / 𝐶) |
| 2 | | fincygsubgodd.1 |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
| 3 | | fincygsubgodd.2 |
. . . . . . 7
⊢ · =
(.g‘𝐺) |
| 4 | | eqid 2735 |
. . . . . . 7
⊢
(od‘𝐺) =
(od‘𝐺) |
| 5 | | fincygsubgodd.6 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 6 | | fincygsubgodd.7 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 7 | | fincygsubgodd.8 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 = 𝐵) |
| 8 | | fincygsubgodd.4 |
. . . . . . . . 9
⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) |
| 9 | 8 | rneqi 5917 |
. . . . . . . 8
⊢ ran 𝐹 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) |
| 10 | 7, 9 | eqtr3di 2785 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))) |
| 11 | 2, 3, 4, 5, 6, 10 | cycsubggenodd 20092 |
. . . . . 6
⊢ (𝜑 → ((od‘𝐺)‘𝐴) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) |
| 12 | | fincygsubgodd.10 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 13 | 12 | iftrued 4508 |
. . . . . 6
⊢ (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = (♯‘𝐵)) |
| 14 | 11, 13 | eqtrd 2770 |
. . . . 5
⊢ (𝜑 → ((od‘𝐺)‘𝐴) = (♯‘𝐵)) |
| 15 | 14 | oveq1d 7420 |
. . . 4
⊢ (𝜑 → (((od‘𝐺)‘𝐴) / 𝐶) = ((♯‘𝐵) / 𝐶)) |
| 16 | | fincygsubgodd.11 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℕ) |
| 17 | 16 | nnzd 12615 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 18 | 2, 4, 3 | odmulg 19537 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ ℤ) → ((od‘𝐺)‘𝐴) = ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴)))) |
| 19 | 5, 6, 17, 18 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → ((od‘𝐺)‘𝐴) = ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴)))) |
| 20 | 2, 4 | odcl 19517 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝐵 → ((od‘𝐺)‘𝐴) ∈
ℕ0) |
| 21 | | nn0z 12613 |
. . . . . . . . 9
⊢
(((od‘𝐺)‘𝐴) ∈ ℕ0 →
((od‘𝐺)‘𝐴) ∈
ℤ) |
| 22 | 6, 20, 21 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℤ) |
| 23 | | fincygsubgodd.9 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) |
| 24 | 23, 14 | breqtrrd 5147 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∥ ((od‘𝐺)‘𝐴)) |
| 25 | 16, 22, 24 | dvdsgcdidd 16556 |
. . . . . . 7
⊢ (𝜑 → (𝐶 gcd ((od‘𝐺)‘𝐴)) = 𝐶) |
| 26 | 25 | oveq1d 7420 |
. . . . . 6
⊢ (𝜑 → ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴)))) |
| 27 | 19, 26 | eqtrd 2770 |
. . . . 5
⊢ (𝜑 → ((od‘𝐺)‘𝐴) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴)))) |
| 28 | 2, 4, 6 | odcld 19533 |
. . . . . . 7
⊢ (𝜑 → ((od‘𝐺)‘𝐴) ∈
ℕ0) |
| 29 | 28 | nn0cnd 12564 |
. . . . . 6
⊢ (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℂ) |
| 30 | 2, 3, 5, 17, 6 | mulgcld 19079 |
. . . . . . . 8
⊢ (𝜑 → (𝐶 · 𝐴) ∈ 𝐵) |
| 31 | 2, 4, 30 | odcld 19533 |
. . . . . . 7
⊢ (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) ∈
ℕ0) |
| 32 | 31 | nn0cnd 12564 |
. . . . . 6
⊢ (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) ∈ ℂ) |
| 33 | 17 | zcnd 12698 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 34 | 16 | nnne0d 12290 |
. . . . . 6
⊢ (𝜑 → 𝐶 ≠ 0) |
| 35 | 29, 32, 33, 34 | divmul2d 12050 |
. . . . 5
⊢ (𝜑 → ((((od‘𝐺)‘𝐴) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)) ↔ ((od‘𝐺)‘𝐴) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴))))) |
| 36 | 27, 35 | mpbird 257 |
. . . 4
⊢ (𝜑 → (((od‘𝐺)‘𝐴) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴))) |
| 37 | 15, 36 | eqtr3d 2772 |
. . 3
⊢ (𝜑 → ((♯‘𝐵) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴))) |
| 38 | 1, 37 | eqtrid 2782 |
. 2
⊢ (𝜑 → 𝐷 = ((od‘𝐺)‘(𝐶 · 𝐴))) |
| 39 | | fincygsubgodd.5 |
. . . . 5
⊢ 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴))) |
| 40 | 39 | rneqi 5917 |
. . . 4
⊢ ran 𝐻 = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴))) |
| 41 | 40 | a1i 11 |
. . 3
⊢ (𝜑 → ran 𝐻 = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))) |
| 42 | 2, 3, 4, 5, 30, 41 | cycsubggenodd 20092 |
. 2
⊢ (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) = if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0)) |
| 43 | 38, 42 | eqtrd 2770 |
. . . . 5
⊢ (𝜑 → 𝐷 = if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0)) |
| 44 | | iffalse 4509 |
. . . . 5
⊢ (¬
ran 𝐻 ∈ Fin →
if(ran 𝐻 ∈ Fin,
(♯‘ran 𝐻), 0) =
0) |
| 45 | 43, 44 | sylan9eq 2790 |
. . . 4
⊢ ((𝜑 ∧ ¬ ran 𝐻 ∈ Fin) → 𝐷 = 0) |
| 46 | 1 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐷 = ((♯‘𝐵) / 𝐶)) |
| 47 | | hashcl 14374 |
. . . . . . . . 9
⊢ (𝐵 ∈ Fin →
(♯‘𝐵) ∈
ℕ0) |
| 48 | | nn0cn 12511 |
. . . . . . . . 9
⊢
((♯‘𝐵)
∈ ℕ0 → (♯‘𝐵) ∈ ℂ) |
| 49 | 12, 47, 48 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐵) ∈
ℂ) |
| 50 | 6, 12 | hashelne0d 14386 |
. . . . . . . . 9
⊢ (𝜑 → ¬ (♯‘𝐵) = 0) |
| 51 | 50 | neqned 2939 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐵) ≠ 0) |
| 52 | 49, 33, 51, 34 | divne0d 12033 |
. . . . . . 7
⊢ (𝜑 → ((♯‘𝐵) / 𝐶) ≠ 0) |
| 53 | 46, 52 | eqnetrd 2999 |
. . . . . 6
⊢ (𝜑 → 𝐷 ≠ 0) |
| 54 | 53 | neneqd 2937 |
. . . . 5
⊢ (𝜑 → ¬ 𝐷 = 0) |
| 55 | 54 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ ran 𝐻 ∈ Fin) → ¬ 𝐷 = 0) |
| 56 | 45, 55 | condan 817 |
. . 3
⊢ (𝜑 → ran 𝐻 ∈ Fin) |
| 57 | 56 | iftrued 4508 |
. 2
⊢ (𝜑 → if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0) = (♯‘ran 𝐻)) |
| 58 | 38, 42, 57 | 3eqtrrd 2775 |
1
⊢ (𝜑 → (♯‘ran 𝐻) = 𝐷) |