MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincygsubgodd Structured version   Visualization version   GIF version

Theorem fincygsubgodd 20024
Description: Calculate the order of a subgroup of a finite cyclic group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
fincygsubgodd.1 𝐵 = (Base‘𝐺)
fincygsubgodd.2 · = (.g𝐺)
fincygsubgodd.3 𝐷 = ((♯‘𝐵) / 𝐶)
fincygsubgodd.4 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
fincygsubgodd.5 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
fincygsubgodd.6 (𝜑𝐺 ∈ Grp)
fincygsubgodd.7 (𝜑𝐴𝐵)
fincygsubgodd.8 (𝜑 → ran 𝐹 = 𝐵)
fincygsubgodd.9 (𝜑𝐶 ∥ (♯‘𝐵))
fincygsubgodd.10 (𝜑𝐵 ∈ Fin)
fincygsubgodd.11 (𝜑𝐶 ∈ ℕ)
Assertion
Ref Expression
fincygsubgodd (𝜑 → (♯‘ran 𝐻) = 𝐷)
Distinct variable groups:   · ,𝑛   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝐺
Allowed substitution hints:   𝜑(𝑛)   𝐷(𝑛)   𝐹(𝑛)   𝐻(𝑛)

Proof of Theorem fincygsubgodd
StepHypRef Expression
1 fincygsubgodd.3 . . 3 𝐷 = ((♯‘𝐵) / 𝐶)
2 fincygsubgodd.1 . . . . . . 7 𝐵 = (Base‘𝐺)
3 fincygsubgodd.2 . . . . . . 7 · = (.g𝐺)
4 eqid 2731 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
5 fincygsubgodd.6 . . . . . . 7 (𝜑𝐺 ∈ Grp)
6 fincygsubgodd.7 . . . . . . 7 (𝜑𝐴𝐵)
7 fincygsubgodd.8 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
8 fincygsubgodd.4 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
98rneqi 5877 . . . . . . . 8 ran 𝐹 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
107, 9eqtr3di 2781 . . . . . . 7 (𝜑𝐵 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)))
112, 3, 4, 5, 6, 10cycsubggenodd 20021 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
12 fincygsubgodd.10 . . . . . . 7 (𝜑𝐵 ∈ Fin)
1312iftrued 4483 . . . . . 6 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = (♯‘𝐵))
1411, 13eqtrd 2766 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = (♯‘𝐵))
1514oveq1d 7361 . . . 4 (𝜑 → (((od‘𝐺)‘𝐴) / 𝐶) = ((♯‘𝐵) / 𝐶))
16 fincygsubgodd.11 . . . . . . . 8 (𝜑𝐶 ∈ ℕ)
1716nnzd 12492 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
182, 4, 3odmulg 19466 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐶 ∈ ℤ) → ((od‘𝐺)‘𝐴) = ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))))
195, 6, 17, 18syl3anc 1373 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) = ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))))
202, 4odcl 19446 . . . . . . . . 9 (𝐴𝐵 → ((od‘𝐺)‘𝐴) ∈ ℕ0)
21 nn0z 12490 . . . . . . . . 9 (((od‘𝐺)‘𝐴) ∈ ℕ0 → ((od‘𝐺)‘𝐴) ∈ ℤ)
226, 20, 213syl 18 . . . . . . . 8 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℤ)
23 fincygsubgodd.9 . . . . . . . . 9 (𝜑𝐶 ∥ (♯‘𝐵))
2423, 14breqtrrd 5119 . . . . . . . 8 (𝜑𝐶 ∥ ((od‘𝐺)‘𝐴))
2516, 22, 24dvdsgcdidd 16445 . . . . . . 7 (𝜑 → (𝐶 gcd ((od‘𝐺)‘𝐴)) = 𝐶)
2625oveq1d 7361 . . . . . 6 (𝜑 → ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴))))
2719, 26eqtrd 2766 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴))))
282, 4, 6odcld 19462 . . . . . . 7 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℕ0)
2928nn0cnd 12441 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℂ)
302, 3, 5, 17, 6mulgcld 19006 . . . . . . . 8 (𝜑 → (𝐶 · 𝐴) ∈ 𝐵)
312, 4, 30odcld 19462 . . . . . . 7 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) ∈ ℕ0)
3231nn0cnd 12441 . . . . . 6 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) ∈ ℂ)
3317zcnd 12575 . . . . . 6 (𝜑𝐶 ∈ ℂ)
3416nnne0d 12172 . . . . . 6 (𝜑𝐶 ≠ 0)
3529, 32, 33, 34divmul2d 11927 . . . . 5 (𝜑 → ((((od‘𝐺)‘𝐴) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)) ↔ ((od‘𝐺)‘𝐴) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴)))))
3627, 35mpbird 257 . . . 4 (𝜑 → (((od‘𝐺)‘𝐴) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)))
3715, 36eqtr3d 2768 . . 3 (𝜑 → ((♯‘𝐵) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)))
381, 37eqtrid 2778 . 2 (𝜑𝐷 = ((od‘𝐺)‘(𝐶 · 𝐴)))
39 fincygsubgodd.5 . . . . 5 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
4039rneqi 5877 . . . 4 ran 𝐻 = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
4140a1i 11 . . 3 (𝜑 → ran 𝐻 = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴))))
422, 3, 4, 5, 30, 41cycsubggenodd 20021 . 2 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) = if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0))
4338, 42eqtrd 2766 . . . . 5 (𝜑𝐷 = if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0))
44 iffalse 4484 . . . . 5 (¬ ran 𝐻 ∈ Fin → if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0) = 0)
4543, 44sylan9eq 2786 . . . 4 ((𝜑 ∧ ¬ ran 𝐻 ∈ Fin) → 𝐷 = 0)
461a1i 11 . . . . . . 7 (𝜑𝐷 = ((♯‘𝐵) / 𝐶))
47 hashcl 14260 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
48 nn0cn 12388 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
4912, 47, 483syl 18 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℂ)
506, 12hashelne0d 14272 . . . . . . . . 9 (𝜑 → ¬ (♯‘𝐵) = 0)
5150neqned 2935 . . . . . . . 8 (𝜑 → (♯‘𝐵) ≠ 0)
5249, 33, 51, 34divne0d 11910 . . . . . . 7 (𝜑 → ((♯‘𝐵) / 𝐶) ≠ 0)
5346, 52eqnetrd 2995 . . . . . 6 (𝜑𝐷 ≠ 0)
5453neneqd 2933 . . . . 5 (𝜑 → ¬ 𝐷 = 0)
5554adantr 480 . . . 4 ((𝜑 ∧ ¬ ran 𝐻 ∈ Fin) → ¬ 𝐷 = 0)
5645, 55condan 817 . . 3 (𝜑 → ran 𝐻 ∈ Fin)
5756iftrued 4483 . 2 (𝜑 → if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0) = (♯‘ran 𝐻))
5838, 42, 573eqtrrd 2771 1 (𝜑 → (♯‘ran 𝐻) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  ifcif 4475   class class class wbr 5091  cmpt 5172  ran crn 5617  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11001  0cc0 11003   · cmul 11008   / cdiv 11771  cn 12122  0cn0 12378  cz 12465  chash 14234  cdvds 16160   gcd cgcd 16402  Basecbs 17117  Grpcgrp 18843  .gcmg 18977  odcod 19434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-acn 9832  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-gcd 16403  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-od 19438
This theorem is referenced by:  fincygsubgodexd  20025
  Copyright terms: Public domain W3C validator