MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincygsubgodd Structured version   Visualization version   GIF version

Theorem fincygsubgodd 20095
Description: Calculate the order of a subgroup of a finite cyclic group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
fincygsubgodd.1 𝐵 = (Base‘𝐺)
fincygsubgodd.2 · = (.g𝐺)
fincygsubgodd.3 𝐷 = ((♯‘𝐵) / 𝐶)
fincygsubgodd.4 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
fincygsubgodd.5 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
fincygsubgodd.6 (𝜑𝐺 ∈ Grp)
fincygsubgodd.7 (𝜑𝐴𝐵)
fincygsubgodd.8 (𝜑 → ran 𝐹 = 𝐵)
fincygsubgodd.9 (𝜑𝐶 ∥ (♯‘𝐵))
fincygsubgodd.10 (𝜑𝐵 ∈ Fin)
fincygsubgodd.11 (𝜑𝐶 ∈ ℕ)
Assertion
Ref Expression
fincygsubgodd (𝜑 → (♯‘ran 𝐻) = 𝐷)
Distinct variable groups:   · ,𝑛   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝐺
Allowed substitution hints:   𝜑(𝑛)   𝐷(𝑛)   𝐹(𝑛)   𝐻(𝑛)

Proof of Theorem fincygsubgodd
StepHypRef Expression
1 fincygsubgodd.3 . . 3 𝐷 = ((♯‘𝐵) / 𝐶)
2 fincygsubgodd.1 . . . . . . 7 𝐵 = (Base‘𝐺)
3 fincygsubgodd.2 . . . . . . 7 · = (.g𝐺)
4 eqid 2735 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
5 fincygsubgodd.6 . . . . . . 7 (𝜑𝐺 ∈ Grp)
6 fincygsubgodd.7 . . . . . . 7 (𝜑𝐴𝐵)
7 fincygsubgodd.8 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
8 fincygsubgodd.4 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
98rneqi 5917 . . . . . . . 8 ran 𝐹 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
107, 9eqtr3di 2785 . . . . . . 7 (𝜑𝐵 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)))
112, 3, 4, 5, 6, 10cycsubggenodd 20092 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
12 fincygsubgodd.10 . . . . . . 7 (𝜑𝐵 ∈ Fin)
1312iftrued 4508 . . . . . 6 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = (♯‘𝐵))
1411, 13eqtrd 2770 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = (♯‘𝐵))
1514oveq1d 7420 . . . 4 (𝜑 → (((od‘𝐺)‘𝐴) / 𝐶) = ((♯‘𝐵) / 𝐶))
16 fincygsubgodd.11 . . . . . . . 8 (𝜑𝐶 ∈ ℕ)
1716nnzd 12615 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
182, 4, 3odmulg 19537 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐶 ∈ ℤ) → ((od‘𝐺)‘𝐴) = ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))))
195, 6, 17, 18syl3anc 1373 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) = ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))))
202, 4odcl 19517 . . . . . . . . 9 (𝐴𝐵 → ((od‘𝐺)‘𝐴) ∈ ℕ0)
21 nn0z 12613 . . . . . . . . 9 (((od‘𝐺)‘𝐴) ∈ ℕ0 → ((od‘𝐺)‘𝐴) ∈ ℤ)
226, 20, 213syl 18 . . . . . . . 8 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℤ)
23 fincygsubgodd.9 . . . . . . . . 9 (𝜑𝐶 ∥ (♯‘𝐵))
2423, 14breqtrrd 5147 . . . . . . . 8 (𝜑𝐶 ∥ ((od‘𝐺)‘𝐴))
2516, 22, 24dvdsgcdidd 16556 . . . . . . 7 (𝜑 → (𝐶 gcd ((od‘𝐺)‘𝐴)) = 𝐶)
2625oveq1d 7420 . . . . . 6 (𝜑 → ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴))))
2719, 26eqtrd 2770 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴))))
282, 4, 6odcld 19533 . . . . . . 7 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℕ0)
2928nn0cnd 12564 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℂ)
302, 3, 5, 17, 6mulgcld 19079 . . . . . . . 8 (𝜑 → (𝐶 · 𝐴) ∈ 𝐵)
312, 4, 30odcld 19533 . . . . . . 7 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) ∈ ℕ0)
3231nn0cnd 12564 . . . . . 6 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) ∈ ℂ)
3317zcnd 12698 . . . . . 6 (𝜑𝐶 ∈ ℂ)
3416nnne0d 12290 . . . . . 6 (𝜑𝐶 ≠ 0)
3529, 32, 33, 34divmul2d 12050 . . . . 5 (𝜑 → ((((od‘𝐺)‘𝐴) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)) ↔ ((od‘𝐺)‘𝐴) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴)))))
3627, 35mpbird 257 . . . 4 (𝜑 → (((od‘𝐺)‘𝐴) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)))
3715, 36eqtr3d 2772 . . 3 (𝜑 → ((♯‘𝐵) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)))
381, 37eqtrid 2782 . 2 (𝜑𝐷 = ((od‘𝐺)‘(𝐶 · 𝐴)))
39 fincygsubgodd.5 . . . . 5 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
4039rneqi 5917 . . . 4 ran 𝐻 = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
4140a1i 11 . . 3 (𝜑 → ran 𝐻 = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴))))
422, 3, 4, 5, 30, 41cycsubggenodd 20092 . 2 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) = if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0))
4338, 42eqtrd 2770 . . . . 5 (𝜑𝐷 = if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0))
44 iffalse 4509 . . . . 5 (¬ ran 𝐻 ∈ Fin → if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0) = 0)
4543, 44sylan9eq 2790 . . . 4 ((𝜑 ∧ ¬ ran 𝐻 ∈ Fin) → 𝐷 = 0)
461a1i 11 . . . . . . 7 (𝜑𝐷 = ((♯‘𝐵) / 𝐶))
47 hashcl 14374 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
48 nn0cn 12511 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
4912, 47, 483syl 18 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℂ)
506, 12hashelne0d 14386 . . . . . . . . 9 (𝜑 → ¬ (♯‘𝐵) = 0)
5150neqned 2939 . . . . . . . 8 (𝜑 → (♯‘𝐵) ≠ 0)
5249, 33, 51, 34divne0d 12033 . . . . . . 7 (𝜑 → ((♯‘𝐵) / 𝐶) ≠ 0)
5346, 52eqnetrd 2999 . . . . . 6 (𝜑𝐷 ≠ 0)
5453neneqd 2937 . . . . 5 (𝜑 → ¬ 𝐷 = 0)
5554adantr 480 . . . 4 ((𝜑 ∧ ¬ ran 𝐻 ∈ Fin) → ¬ 𝐷 = 0)
5645, 55condan 817 . . 3 (𝜑 → ran 𝐻 ∈ Fin)
5756iftrued 4508 . 2 (𝜑 → if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0) = (♯‘ran 𝐻))
5838, 42, 573eqtrrd 2775 1 (𝜑 → (♯‘ran 𝐻) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  ifcif 4500   class class class wbr 5119  cmpt 5201  ran crn 5655  cfv 6531  (class class class)co 7405  Fincfn 8959  cc 11127  0cc0 11129   · cmul 11134   / cdiv 11894  cn 12240  0cn0 12501  cz 12588  chash 14348  cdvds 16272   gcd cgcd 16513  Basecbs 17228  Grpcgrp 18916  .gcmg 19050  odcod 19505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-od 19509
This theorem is referenced by:  fincygsubgodexd  20096
  Copyright terms: Public domain W3C validator