MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincygsubgodd Structured version   Visualization version   GIF version

Theorem fincygsubgodd 20028
Description: Calculate the order of a subgroup of a finite cyclic group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
fincygsubgodd.1 𝐵 = (Base‘𝐺)
fincygsubgodd.2 · = (.g𝐺)
fincygsubgodd.3 𝐷 = ((♯‘𝐵) / 𝐶)
fincygsubgodd.4 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
fincygsubgodd.5 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
fincygsubgodd.6 (𝜑𝐺 ∈ Grp)
fincygsubgodd.7 (𝜑𝐴𝐵)
fincygsubgodd.8 (𝜑 → ran 𝐹 = 𝐵)
fincygsubgodd.9 (𝜑𝐶 ∥ (♯‘𝐵))
fincygsubgodd.10 (𝜑𝐵 ∈ Fin)
fincygsubgodd.11 (𝜑𝐶 ∈ ℕ)
Assertion
Ref Expression
fincygsubgodd (𝜑 → (♯‘ran 𝐻) = 𝐷)
Distinct variable groups:   · ,𝑛   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝐺
Allowed substitution hints:   𝜑(𝑛)   𝐷(𝑛)   𝐹(𝑛)   𝐻(𝑛)

Proof of Theorem fincygsubgodd
StepHypRef Expression
1 fincygsubgodd.3 . . 3 𝐷 = ((♯‘𝐵) / 𝐶)
2 fincygsubgodd.1 . . . . . . 7 𝐵 = (Base‘𝐺)
3 fincygsubgodd.2 . . . . . . 7 · = (.g𝐺)
4 eqid 2733 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
5 fincygsubgodd.6 . . . . . . 7 (𝜑𝐺 ∈ Grp)
6 fincygsubgodd.7 . . . . . . 7 (𝜑𝐴𝐵)
7 fincygsubgodd.8 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
8 fincygsubgodd.4 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
98rneqi 5881 . . . . . . . 8 ran 𝐹 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
107, 9eqtr3di 2783 . . . . . . 7 (𝜑𝐵 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)))
112, 3, 4, 5, 6, 10cycsubggenodd 20025 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
12 fincygsubgodd.10 . . . . . . 7 (𝜑𝐵 ∈ Fin)
1312iftrued 4482 . . . . . 6 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = (♯‘𝐵))
1411, 13eqtrd 2768 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = (♯‘𝐵))
1514oveq1d 7367 . . . 4 (𝜑 → (((od‘𝐺)‘𝐴) / 𝐶) = ((♯‘𝐵) / 𝐶))
16 fincygsubgodd.11 . . . . . . . 8 (𝜑𝐶 ∈ ℕ)
1716nnzd 12501 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
182, 4, 3odmulg 19470 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐶 ∈ ℤ) → ((od‘𝐺)‘𝐴) = ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))))
195, 6, 17, 18syl3anc 1373 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) = ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))))
202, 4odcl 19450 . . . . . . . . 9 (𝐴𝐵 → ((od‘𝐺)‘𝐴) ∈ ℕ0)
21 nn0z 12499 . . . . . . . . 9 (((od‘𝐺)‘𝐴) ∈ ℕ0 → ((od‘𝐺)‘𝐴) ∈ ℤ)
226, 20, 213syl 18 . . . . . . . 8 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℤ)
23 fincygsubgodd.9 . . . . . . . . 9 (𝜑𝐶 ∥ (♯‘𝐵))
2423, 14breqtrrd 5121 . . . . . . . 8 (𝜑𝐶 ∥ ((od‘𝐺)‘𝐴))
2516, 22, 24dvdsgcdidd 16450 . . . . . . 7 (𝜑 → (𝐶 gcd ((od‘𝐺)‘𝐴)) = 𝐶)
2625oveq1d 7367 . . . . . 6 (𝜑 → ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴))))
2719, 26eqtrd 2768 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴))))
282, 4, 6odcld 19466 . . . . . . 7 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℕ0)
2928nn0cnd 12451 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℂ)
302, 3, 5, 17, 6mulgcld 19011 . . . . . . . 8 (𝜑 → (𝐶 · 𝐴) ∈ 𝐵)
312, 4, 30odcld 19466 . . . . . . 7 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) ∈ ℕ0)
3231nn0cnd 12451 . . . . . 6 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) ∈ ℂ)
3317zcnd 12584 . . . . . 6 (𝜑𝐶 ∈ ℂ)
3416nnne0d 12182 . . . . . 6 (𝜑𝐶 ≠ 0)
3529, 32, 33, 34divmul2d 11937 . . . . 5 (𝜑 → ((((od‘𝐺)‘𝐴) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)) ↔ ((od‘𝐺)‘𝐴) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴)))))
3627, 35mpbird 257 . . . 4 (𝜑 → (((od‘𝐺)‘𝐴) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)))
3715, 36eqtr3d 2770 . . 3 (𝜑 → ((♯‘𝐵) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)))
381, 37eqtrid 2780 . 2 (𝜑𝐷 = ((od‘𝐺)‘(𝐶 · 𝐴)))
39 fincygsubgodd.5 . . . . 5 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
4039rneqi 5881 . . . 4 ran 𝐻 = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
4140a1i 11 . . 3 (𝜑 → ran 𝐻 = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴))))
422, 3, 4, 5, 30, 41cycsubggenodd 20025 . 2 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) = if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0))
4338, 42eqtrd 2768 . . . . 5 (𝜑𝐷 = if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0))
44 iffalse 4483 . . . . 5 (¬ ran 𝐻 ∈ Fin → if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0) = 0)
4543, 44sylan9eq 2788 . . . 4 ((𝜑 ∧ ¬ ran 𝐻 ∈ Fin) → 𝐷 = 0)
461a1i 11 . . . . . . 7 (𝜑𝐷 = ((♯‘𝐵) / 𝐶))
47 hashcl 14265 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
48 nn0cn 12398 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
4912, 47, 483syl 18 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℂ)
506, 12hashelne0d 14277 . . . . . . . . 9 (𝜑 → ¬ (♯‘𝐵) = 0)
5150neqned 2936 . . . . . . . 8 (𝜑 → (♯‘𝐵) ≠ 0)
5249, 33, 51, 34divne0d 11920 . . . . . . 7 (𝜑 → ((♯‘𝐵) / 𝐶) ≠ 0)
5346, 52eqnetrd 2996 . . . . . 6 (𝜑𝐷 ≠ 0)
5453neneqd 2934 . . . . 5 (𝜑 → ¬ 𝐷 = 0)
5554adantr 480 . . . 4 ((𝜑 ∧ ¬ ran 𝐻 ∈ Fin) → ¬ 𝐷 = 0)
5645, 55condan 817 . . 3 (𝜑 → ran 𝐻 ∈ Fin)
5756iftrued 4482 . 2 (𝜑 → if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0) = (♯‘ran 𝐻))
5838, 42, 573eqtrrd 2773 1 (𝜑 → (♯‘ran 𝐻) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  ifcif 4474   class class class wbr 5093  cmpt 5174  ran crn 5620  cfv 6486  (class class class)co 7352  Fincfn 8875  cc 11011  0cc0 11013   · cmul 11018   / cdiv 11781  cn 12132  0cn0 12388  cz 12475  chash 14239  cdvds 16165   gcd cgcd 16407  Basecbs 17122  Grpcgrp 18848  .gcmg 18982  odcod 19438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-gcd 16408  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-od 19442
This theorem is referenced by:  fincygsubgodexd  20029
  Copyright terms: Public domain W3C validator