MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincygsubgodd Structured version   Visualization version   GIF version

Theorem fincygsubgodd 19760
Description: Calculate the order of a subgroup of a finite cyclic group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
fincygsubgodd.1 𝐵 = (Base‘𝐺)
fincygsubgodd.2 · = (.g𝐺)
fincygsubgodd.3 𝐷 = ((♯‘𝐵) / 𝐶)
fincygsubgodd.4 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
fincygsubgodd.5 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
fincygsubgodd.6 (𝜑𝐺 ∈ Grp)
fincygsubgodd.7 (𝜑𝐴𝐵)
fincygsubgodd.8 (𝜑 → ran 𝐹 = 𝐵)
fincygsubgodd.9 (𝜑𝐶 ∥ (♯‘𝐵))
fincygsubgodd.10 (𝜑𝐵 ∈ Fin)
fincygsubgodd.11 (𝜑𝐶 ∈ ℕ)
Assertion
Ref Expression
fincygsubgodd (𝜑 → (♯‘ran 𝐻) = 𝐷)
Distinct variable groups:   · ,𝑛   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝐺
Allowed substitution hints:   𝜑(𝑛)   𝐷(𝑛)   𝐹(𝑛)   𝐻(𝑛)

Proof of Theorem fincygsubgodd
StepHypRef Expression
1 fincygsubgodd.3 . . 3 𝐷 = ((♯‘𝐵) / 𝐶)
2 fincygsubgodd.1 . . . . . . 7 𝐵 = (Base‘𝐺)
3 fincygsubgodd.2 . . . . . . 7 · = (.g𝐺)
4 eqid 2736 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
5 fincygsubgodd.6 . . . . . . 7 (𝜑𝐺 ∈ Grp)
6 fincygsubgodd.7 . . . . . . 7 (𝜑𝐴𝐵)
7 fincygsubgodd.8 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
8 fincygsubgodd.4 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
98rneqi 5858 . . . . . . . 8 ran 𝐹 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
107, 9eqtr3di 2791 . . . . . . 7 (𝜑𝐵 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)))
112, 3, 4, 5, 6, 10cycsubggenodd 19757 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
12 fincygsubgodd.10 . . . . . . 7 (𝜑𝐵 ∈ Fin)
1312iftrued 4473 . . . . . 6 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = (♯‘𝐵))
1411, 13eqtrd 2776 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = (♯‘𝐵))
1514oveq1d 7322 . . . 4 (𝜑 → (((od‘𝐺)‘𝐴) / 𝐶) = ((♯‘𝐵) / 𝐶))
16 fincygsubgodd.11 . . . . . . . 8 (𝜑𝐶 ∈ ℕ)
1716nnzd 12471 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
182, 4, 3odmulg 19208 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐶 ∈ ℤ) → ((od‘𝐺)‘𝐴) = ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))))
195, 6, 17, 18syl3anc 1371 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) = ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))))
202, 4odcl 19189 . . . . . . . . 9 (𝐴𝐵 → ((od‘𝐺)‘𝐴) ∈ ℕ0)
21 nn0z 12389 . . . . . . . . 9 (((od‘𝐺)‘𝐴) ∈ ℕ0 → ((od‘𝐺)‘𝐴) ∈ ℤ)
226, 20, 213syl 18 . . . . . . . 8 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℤ)
23 fincygsubgodd.9 . . . . . . . . 9 (𝜑𝐶 ∥ (♯‘𝐵))
2423, 14breqtrrd 5109 . . . . . . . 8 (𝜑𝐶 ∥ ((od‘𝐺)‘𝐴))
2516, 22, 24dvdsgcdidd 16290 . . . . . . 7 (𝜑 → (𝐶 gcd ((od‘𝐺)‘𝐴)) = 𝐶)
2625oveq1d 7322 . . . . . 6 (𝜑 → ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴))))
2719, 26eqtrd 2776 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴))))
282, 4, 6odcld 19205 . . . . . . 7 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℕ0)
2928nn0cnd 12341 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℂ)
302, 3, 5, 17, 6mulgcld 18770 . . . . . . . 8 (𝜑 → (𝐶 · 𝐴) ∈ 𝐵)
312, 4, 30odcld 19205 . . . . . . 7 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) ∈ ℕ0)
3231nn0cnd 12341 . . . . . 6 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) ∈ ℂ)
3317zcnd 12473 . . . . . 6 (𝜑𝐶 ∈ ℂ)
3416nnne0d 12069 . . . . . 6 (𝜑𝐶 ≠ 0)
3529, 32, 33, 34divmul2d 11830 . . . . 5 (𝜑 → ((((od‘𝐺)‘𝐴) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)) ↔ ((od‘𝐺)‘𝐴) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴)))))
3627, 35mpbird 257 . . . 4 (𝜑 → (((od‘𝐺)‘𝐴) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)))
3715, 36eqtr3d 2778 . . 3 (𝜑 → ((♯‘𝐵) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)))
381, 37eqtrid 2788 . 2 (𝜑𝐷 = ((od‘𝐺)‘(𝐶 · 𝐴)))
39 fincygsubgodd.5 . . . . 5 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
4039rneqi 5858 . . . 4 ran 𝐻 = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
4140a1i 11 . . 3 (𝜑 → ran 𝐻 = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴))))
422, 3, 4, 5, 30, 41cycsubggenodd 19757 . 2 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) = if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0))
4338, 42eqtrd 2776 . . . . 5 (𝜑𝐷 = if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0))
44 iffalse 4474 . . . . 5 (¬ ran 𝐻 ∈ Fin → if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0) = 0)
4543, 44sylan9eq 2796 . . . 4 ((𝜑 ∧ ¬ ran 𝐻 ∈ Fin) → 𝐷 = 0)
461a1i 11 . . . . . . 7 (𝜑𝐷 = ((♯‘𝐵) / 𝐶))
47 hashcl 14116 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
48 nn0cn 12289 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
4912, 47, 483syl 18 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℂ)
506, 12hashelne0d 14128 . . . . . . . . 9 (𝜑 → ¬ (♯‘𝐵) = 0)
5150neqned 2948 . . . . . . . 8 (𝜑 → (♯‘𝐵) ≠ 0)
5249, 33, 51, 34divne0d 11813 . . . . . . 7 (𝜑 → ((♯‘𝐵) / 𝐶) ≠ 0)
5346, 52eqnetrd 3009 . . . . . 6 (𝜑𝐷 ≠ 0)
5453neneqd 2946 . . . . 5 (𝜑 → ¬ 𝐷 = 0)
5554adantr 482 . . . 4 ((𝜑 ∧ ¬ ran 𝐻 ∈ Fin) → ¬ 𝐷 = 0)
5645, 55condan 816 . . 3 (𝜑 → ran 𝐻 ∈ Fin)
5756iftrued 4473 . 2 (𝜑 → if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0) = (♯‘ran 𝐻))
5838, 42, 573eqtrrd 2781 1 (𝜑 → (♯‘ran 𝐻) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2104  ifcif 4465   class class class wbr 5081  cmpt 5164  ran crn 5601  cfv 6458  (class class class)co 7307  Fincfn 8764  cc 10915  0cc0 10917   · cmul 10922   / cdiv 11678  cn 12019  0cn0 12279  cz 12365  chash 14090  cdvds 16008   gcd cgcd 16246  Basecbs 16957  Grpcgrp 18622  .gcmg 18745  odcod 19177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-oadd 8332  df-omul 8333  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9245  df-inf 9246  df-oi 9313  df-card 9741  df-acn 9744  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-n0 12280  df-z 12366  df-uz 12629  df-rp 12777  df-fz 13286  df-fl 13558  df-mod 13636  df-seq 13768  df-exp 13829  df-hash 14091  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-dvds 16009  df-gcd 16247  df-0g 17197  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-grp 18625  df-minusg 18626  df-sbg 18627  df-mulg 18746  df-od 19181
This theorem is referenced by:  fincygsubgodexd  19761
  Copyright terms: Public domain W3C validator