MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincygsubgodd Structured version   Visualization version   GIF version

Theorem fincygsubgodd 20011
Description: Calculate the order of a subgroup of a finite cyclic group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
fincygsubgodd.1 𝐵 = (Base‘𝐺)
fincygsubgodd.2 · = (.g𝐺)
fincygsubgodd.3 𝐷 = ((♯‘𝐵) / 𝐶)
fincygsubgodd.4 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
fincygsubgodd.5 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
fincygsubgodd.6 (𝜑𝐺 ∈ Grp)
fincygsubgodd.7 (𝜑𝐴𝐵)
fincygsubgodd.8 (𝜑 → ran 𝐹 = 𝐵)
fincygsubgodd.9 (𝜑𝐶 ∥ (♯‘𝐵))
fincygsubgodd.10 (𝜑𝐵 ∈ Fin)
fincygsubgodd.11 (𝜑𝐶 ∈ ℕ)
Assertion
Ref Expression
fincygsubgodd (𝜑 → (♯‘ran 𝐻) = 𝐷)
Distinct variable groups:   · ,𝑛   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝐺
Allowed substitution hints:   𝜑(𝑛)   𝐷(𝑛)   𝐹(𝑛)   𝐻(𝑛)

Proof of Theorem fincygsubgodd
StepHypRef Expression
1 fincygsubgodd.3 . . 3 𝐷 = ((♯‘𝐵) / 𝐶)
2 fincygsubgodd.1 . . . . . . 7 𝐵 = (Base‘𝐺)
3 fincygsubgodd.2 . . . . . . 7 · = (.g𝐺)
4 eqid 2729 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
5 fincygsubgodd.6 . . . . . . 7 (𝜑𝐺 ∈ Grp)
6 fincygsubgodd.7 . . . . . . 7 (𝜑𝐴𝐵)
7 fincygsubgodd.8 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
8 fincygsubgodd.4 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
98rneqi 5883 . . . . . . . 8 ran 𝐹 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
107, 9eqtr3di 2779 . . . . . . 7 (𝜑𝐵 = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)))
112, 3, 4, 5, 6, 10cycsubggenodd 20008 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
12 fincygsubgodd.10 . . . . . . 7 (𝜑𝐵 ∈ Fin)
1312iftrued 4486 . . . . . 6 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = (♯‘𝐵))
1411, 13eqtrd 2764 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = (♯‘𝐵))
1514oveq1d 7368 . . . 4 (𝜑 → (((od‘𝐺)‘𝐴) / 𝐶) = ((♯‘𝐵) / 𝐶))
16 fincygsubgodd.11 . . . . . . . 8 (𝜑𝐶 ∈ ℕ)
1716nnzd 12516 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
182, 4, 3odmulg 19453 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐶 ∈ ℤ) → ((od‘𝐺)‘𝐴) = ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))))
195, 6, 17, 18syl3anc 1373 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) = ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))))
202, 4odcl 19433 . . . . . . . . 9 (𝐴𝐵 → ((od‘𝐺)‘𝐴) ∈ ℕ0)
21 nn0z 12514 . . . . . . . . 9 (((od‘𝐺)‘𝐴) ∈ ℕ0 → ((od‘𝐺)‘𝐴) ∈ ℤ)
226, 20, 213syl 18 . . . . . . . 8 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℤ)
23 fincygsubgodd.9 . . . . . . . . 9 (𝜑𝐶 ∥ (♯‘𝐵))
2423, 14breqtrrd 5123 . . . . . . . 8 (𝜑𝐶 ∥ ((od‘𝐺)‘𝐴))
2516, 22, 24dvdsgcdidd 16466 . . . . . . 7 (𝜑 → (𝐶 gcd ((od‘𝐺)‘𝐴)) = 𝐶)
2625oveq1d 7368 . . . . . 6 (𝜑 → ((𝐶 gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘(𝐶 · 𝐴))) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴))))
2719, 26eqtrd 2764 . . . . 5 (𝜑 → ((od‘𝐺)‘𝐴) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴))))
282, 4, 6odcld 19449 . . . . . . 7 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℕ0)
2928nn0cnd 12465 . . . . . 6 (𝜑 → ((od‘𝐺)‘𝐴) ∈ ℂ)
302, 3, 5, 17, 6mulgcld 18993 . . . . . . . 8 (𝜑 → (𝐶 · 𝐴) ∈ 𝐵)
312, 4, 30odcld 19449 . . . . . . 7 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) ∈ ℕ0)
3231nn0cnd 12465 . . . . . 6 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) ∈ ℂ)
3317zcnd 12599 . . . . . 6 (𝜑𝐶 ∈ ℂ)
3416nnne0d 12196 . . . . . 6 (𝜑𝐶 ≠ 0)
3529, 32, 33, 34divmul2d 11951 . . . . 5 (𝜑 → ((((od‘𝐺)‘𝐴) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)) ↔ ((od‘𝐺)‘𝐴) = (𝐶 · ((od‘𝐺)‘(𝐶 · 𝐴)))))
3627, 35mpbird 257 . . . 4 (𝜑 → (((od‘𝐺)‘𝐴) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)))
3715, 36eqtr3d 2766 . . 3 (𝜑 → ((♯‘𝐵) / 𝐶) = ((od‘𝐺)‘(𝐶 · 𝐴)))
381, 37eqtrid 2776 . 2 (𝜑𝐷 = ((od‘𝐺)‘(𝐶 · 𝐴)))
39 fincygsubgodd.5 . . . . 5 𝐻 = (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
4039rneqi 5883 . . . 4 ran 𝐻 = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴)))
4140a1i 11 . . 3 (𝜑 → ran 𝐻 = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝐶 · 𝐴))))
422, 3, 4, 5, 30, 41cycsubggenodd 20008 . 2 (𝜑 → ((od‘𝐺)‘(𝐶 · 𝐴)) = if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0))
4338, 42eqtrd 2764 . . . . 5 (𝜑𝐷 = if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0))
44 iffalse 4487 . . . . 5 (¬ ran 𝐻 ∈ Fin → if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0) = 0)
4543, 44sylan9eq 2784 . . . 4 ((𝜑 ∧ ¬ ran 𝐻 ∈ Fin) → 𝐷 = 0)
461a1i 11 . . . . . . 7 (𝜑𝐷 = ((♯‘𝐵) / 𝐶))
47 hashcl 14281 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
48 nn0cn 12412 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
4912, 47, 483syl 18 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℂ)
506, 12hashelne0d 14293 . . . . . . . . 9 (𝜑 → ¬ (♯‘𝐵) = 0)
5150neqned 2932 . . . . . . . 8 (𝜑 → (♯‘𝐵) ≠ 0)
5249, 33, 51, 34divne0d 11934 . . . . . . 7 (𝜑 → ((♯‘𝐵) / 𝐶) ≠ 0)
5346, 52eqnetrd 2992 . . . . . 6 (𝜑𝐷 ≠ 0)
5453neneqd 2930 . . . . 5 (𝜑 → ¬ 𝐷 = 0)
5554adantr 480 . . . 4 ((𝜑 ∧ ¬ ran 𝐻 ∈ Fin) → ¬ 𝐷 = 0)
5645, 55condan 817 . . 3 (𝜑 → ran 𝐻 ∈ Fin)
5756iftrued 4486 . 2 (𝜑 → if(ran 𝐻 ∈ Fin, (♯‘ran 𝐻), 0) = (♯‘ran 𝐻))
5838, 42, 573eqtrrd 2769 1 (𝜑 → (♯‘ran 𝐻) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  ifcif 4478   class class class wbr 5095  cmpt 5176  ran crn 5624  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  0cc0 11028   · cmul 11033   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  chash 14255  cdvds 16181   gcd cgcd 16423  Basecbs 17138  Grpcgrp 18830  .gcmg 18964  odcod 19421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-od 19425
This theorem is referenced by:  fincygsubgodexd  20012
  Copyright terms: Public domain W3C validator