Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmfv2 Structured version   Visualization version   GIF version

Theorem cycpmfv2 33116
Description: Value of a cycle function for the last element of the orbit. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmfv2.1 (𝜑 → 0 < (♯‘𝑊))
cycpmfv2.2 (𝜑𝑁 = ((♯‘𝑊) − 1))
Assertion
Ref Expression
cycpmfv2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘0))

Proof of Theorem cycpmfv2
StepHypRef Expression
1 tocycval.1 . . 3 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . 3 (𝜑𝐷𝑉)
3 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
5 cycpmfv2.2 . . . 4 (𝜑𝑁 = ((♯‘𝑊) − 1))
6 lencl 14567 . . . . . . . 8 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
73, 6syl 17 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ ℕ0)
8 cycpmfv2.1 . . . . . . 7 (𝜑 → 0 < (♯‘𝑊))
9 elnnnn0b 12567 . . . . . . 7 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ 0 < (♯‘𝑊)))
107, 8, 9sylanbrc 583 . . . . . 6 (𝜑 → (♯‘𝑊) ∈ ℕ)
11 elfz1end 13590 . . . . . 6 ((♯‘𝑊) ∈ ℕ ↔ (♯‘𝑊) ∈ (1...(♯‘𝑊)))
1210, 11sylib 218 . . . . 5 (𝜑 → (♯‘𝑊) ∈ (1...(♯‘𝑊)))
13 fz1fzo0m1 13746 . . . . 5 ((♯‘𝑊) ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
1412, 13syl 17 . . . 4 (𝜑 → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
155, 14eqeltrd 2838 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
161, 2, 3, 4, 15cycpmfvlem 33114 . 2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
17 df-f1 6567 . . . . 5 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
184, 17sylib 218 . . . 4 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1918simprd 495 . . 3 (𝜑 → Fun 𝑊)
20 wrdfn 14562 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
213, 20syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
22 fnfvelrn 7099 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ ran 𝑊)
2321, 15, 22syl2anc 584 . . . 4 (𝜑 → (𝑊𝑁) ∈ ran 𝑊)
24 df-rn 5699 . . . 4 ran 𝑊 = dom 𝑊
2523, 24eleqtrdi 2848 . . 3 (𝜑 → (𝑊𝑁) ∈ dom 𝑊)
26 fvco 7006 . . 3 ((Fun 𝑊 ∧ (𝑊𝑁) ∈ dom 𝑊) → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
2719, 25, 26syl2anc 584 . 2 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
28 f1f1orn 6859 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
294, 28syl 17 . . . . 5 (𝜑𝑊:dom 𝑊1-1-onto→ran 𝑊)
3021fndmd 6673 . . . . . 6 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3115, 30eleqtrrd 2841 . . . . 5 (𝜑𝑁 ∈ dom 𝑊)
32 f1ocnvfv1 7295 . . . . 5 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝑁 ∈ dom 𝑊) → (𝑊‘(𝑊𝑁)) = 𝑁)
3329, 31, 32syl2anc 584 . . . 4 (𝜑 → (𝑊‘(𝑊𝑁)) = 𝑁)
3433fveq2d 6910 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = ((𝑊 cyclShift 1)‘𝑁))
35 1zzd 12645 . . . 4 (𝜑 → 1 ∈ ℤ)
36 cshwidxmod 14837 . . . 4 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
373, 35, 15, 36syl3anc 1370 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
38 fzossfz 13714 . . . . . . . 8 (0..^(♯‘𝑊)) ⊆ (0...(♯‘𝑊))
39 fzssz 13562 . . . . . . . 8 (0...(♯‘𝑊)) ⊆ ℤ
4038, 39sstri 4004 . . . . . . 7 (0..^(♯‘𝑊)) ⊆ ℤ
4140, 15sselid 3992 . . . . . 6 (𝜑𝑁 ∈ ℤ)
4241zred 12719 . . . . 5 (𝜑𝑁 ∈ ℝ)
4310nnrpd 13072 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℝ+)
445oveq1d 7445 . . . . . 6 (𝜑 → (𝑁 mod (♯‘𝑊)) = (((♯‘𝑊) − 1) mod (♯‘𝑊)))
45 zmodidfzoimp 13937 . . . . . . 7 (((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)) → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
4614, 45syl 17 . . . . . 6 (𝜑 → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
4744, 46eqtrd 2774 . . . . 5 (𝜑 → (𝑁 mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
48 modm1p1mod0 13959 . . . . . 6 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((𝑁 mod (♯‘𝑊)) = ((♯‘𝑊) − 1) → ((𝑁 + 1) mod (♯‘𝑊)) = 0))
4948imp 406 . . . . 5 (((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (𝑁 mod (♯‘𝑊)) = ((♯‘𝑊) − 1)) → ((𝑁 + 1) mod (♯‘𝑊)) = 0)
5042, 43, 47, 49syl21anc 838 . . . 4 (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = 0)
5150fveq2d 6910 . . 3 (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘0))
5234, 37, 513eqtrd 2778 . 2 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = (𝑊‘0))
5316, 27, 523eqtrd 2778 1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105   class class class wbr 5147  ccnv 5687  dom cdm 5688  ran crn 5689  ccom 5692  Fun wfun 6556   Fn wfn 6557  wf 6558  1-1wf1 6559  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   < clt 11292  cmin 11489  cn 12263  0cn0 12523  cz 12610  +crp 13031  ...cfz 13543  ..^cfzo 13690   mod cmo 13905  chash 14365  Word cword 14548   cyclShift ccsh 14822  toCycctocyc 33108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-hash 14366  df-word 14549  df-concat 14605  df-substr 14675  df-pfx 14705  df-csh 14823  df-tocyc 33109
This theorem is referenced by:  cyc2fv2  33124  cycpmco2lem4  33131  cycpmco2lem5  33132  cyc3fv3  33141  cycpmrn  33145
  Copyright terms: Public domain W3C validator