Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmfv2 Structured version   Visualization version   GIF version

Theorem cycpmfv2 30783
Description: Value of a cycle function for the last element of the orbit. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmfv2.1 (𝜑 → 0 < (♯‘𝑊))
cycpmfv2.2 (𝜑𝑁 = ((♯‘𝑊) − 1))
Assertion
Ref Expression
cycpmfv2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘0))

Proof of Theorem cycpmfv2
StepHypRef Expression
1 tocycval.1 . . 3 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . 3 (𝜑𝐷𝑉)
3 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
5 cycpmfv2.2 . . . 4 (𝜑𝑁 = ((♯‘𝑊) − 1))
6 lencl 13883 . . . . . . . 8 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
73, 6syl 17 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ ℕ0)
8 cycpmfv2.1 . . . . . . 7 (𝜑 → 0 < (♯‘𝑊))
9 elnnnn0b 11936 . . . . . . 7 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ 0 < (♯‘𝑊)))
107, 8, 9sylanbrc 586 . . . . . 6 (𝜑 → (♯‘𝑊) ∈ ℕ)
11 elfz1end 12939 . . . . . 6 ((♯‘𝑊) ∈ ℕ ↔ (♯‘𝑊) ∈ (1...(♯‘𝑊)))
1210, 11sylib 221 . . . . 5 (𝜑 → (♯‘𝑊) ∈ (1...(♯‘𝑊)))
13 fz1fzo0m1 13087 . . . . 5 ((♯‘𝑊) ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
1412, 13syl 17 . . . 4 (𝜑 → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
155, 14eqeltrd 2916 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
161, 2, 3, 4, 15cycpmfvlem 30781 . 2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
17 df-f1 6349 . . . . 5 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
184, 17sylib 221 . . . 4 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1918simprd 499 . . 3 (𝜑 → Fun 𝑊)
20 wrdfn 13878 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
213, 20syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
22 fnfvelrn 6837 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ ran 𝑊)
2321, 15, 22syl2anc 587 . . . 4 (𝜑 → (𝑊𝑁) ∈ ran 𝑊)
24 df-rn 5554 . . . 4 ran 𝑊 = dom 𝑊
2523, 24eleqtrdi 2926 . . 3 (𝜑 → (𝑊𝑁) ∈ dom 𝑊)
26 fvco 6748 . . 3 ((Fun 𝑊 ∧ (𝑊𝑁) ∈ dom 𝑊) → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
2719, 25, 26syl2anc 587 . 2 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
28 f1f1orn 6615 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
294, 28syl 17 . . . . 5 (𝜑𝑊:dom 𝑊1-1-onto→ran 𝑊)
3021fndmd 6445 . . . . . 6 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3115, 30eleqtrrd 2919 . . . . 5 (𝜑𝑁 ∈ dom 𝑊)
32 f1ocnvfv1 7023 . . . . 5 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝑁 ∈ dom 𝑊) → (𝑊‘(𝑊𝑁)) = 𝑁)
3329, 31, 32syl2anc 587 . . . 4 (𝜑 → (𝑊‘(𝑊𝑁)) = 𝑁)
3433fveq2d 6663 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = ((𝑊 cyclShift 1)‘𝑁))
35 1zzd 12008 . . . 4 (𝜑 → 1 ∈ ℤ)
36 cshwidxmod 14163 . . . 4 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
373, 35, 15, 36syl3anc 1368 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
38 fzossfz 13058 . . . . . . . 8 (0..^(♯‘𝑊)) ⊆ (0...(♯‘𝑊))
39 fzssz 12911 . . . . . . . 8 (0...(♯‘𝑊)) ⊆ ℤ
4038, 39sstri 3962 . . . . . . 7 (0..^(♯‘𝑊)) ⊆ ℤ
4140, 15sseldi 3951 . . . . . 6 (𝜑𝑁 ∈ ℤ)
4241zred 12082 . . . . 5 (𝜑𝑁 ∈ ℝ)
4310nnrpd 12424 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℝ+)
445oveq1d 7161 . . . . . 6 (𝜑 → (𝑁 mod (♯‘𝑊)) = (((♯‘𝑊) − 1) mod (♯‘𝑊)))
45 zmodidfzoimp 13271 . . . . . . 7 (((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)) → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
4614, 45syl 17 . . . . . 6 (𝜑 → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
4744, 46eqtrd 2859 . . . . 5 (𝜑 → (𝑁 mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
48 modm1p1mod0 13292 . . . . . 6 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((𝑁 mod (♯‘𝑊)) = ((♯‘𝑊) − 1) → ((𝑁 + 1) mod (♯‘𝑊)) = 0))
4948imp 410 . . . . 5 (((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (𝑁 mod (♯‘𝑊)) = ((♯‘𝑊) − 1)) → ((𝑁 + 1) mod (♯‘𝑊)) = 0)
5042, 43, 47, 49syl21anc 836 . . . 4 (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = 0)
5150fveq2d 6663 . . 3 (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘0))
5234, 37, 513eqtrd 2863 . 2 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = (𝑊‘0))
5316, 27, 523eqtrd 2863 1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115   class class class wbr 5053  ccnv 5542  dom cdm 5543  ran crn 5544  ccom 5547  Fun wfun 6338   Fn wfn 6339  wf 6340  1-1wf1 6341  1-1-ontowf1o 6343  cfv 6344  (class class class)co 7146  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cmin 10864  cn 11632  0cn0 11892  cz 11976  +crp 12384  ...cfz 12892  ..^cfzo 13035   mod cmo 13239  chash 13693  Word cword 13864   cyclShift ccsh 14148  toCycctocyc 30775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8899  df-inf 8900  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-n0 11893  df-z 11977  df-uz 12239  df-rp 12385  df-fz 12893  df-fzo 13036  df-fl 13164  df-mod 13240  df-hash 13694  df-word 13865  df-concat 13921  df-substr 14001  df-pfx 14031  df-csh 14149  df-tocyc 30776
This theorem is referenced by:  cyc2fv2  30791  cycpmco2lem4  30798  cycpmco2lem5  30799  cyc3fv3  30808  cycpmrn  30812
  Copyright terms: Public domain W3C validator