Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmfv2 Structured version   Visualization version   GIF version

Theorem cycpmfv2 31283
Description: Value of a cycle function for the last element of the orbit. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmfv2.1 (𝜑 → 0 < (♯‘𝑊))
cycpmfv2.2 (𝜑𝑁 = ((♯‘𝑊) − 1))
Assertion
Ref Expression
cycpmfv2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘0))

Proof of Theorem cycpmfv2
StepHypRef Expression
1 tocycval.1 . . 3 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . 3 (𝜑𝐷𝑉)
3 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
5 cycpmfv2.2 . . . 4 (𝜑𝑁 = ((♯‘𝑊) − 1))
6 lencl 14164 . . . . . . . 8 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
73, 6syl 17 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ ℕ0)
8 cycpmfv2.1 . . . . . . 7 (𝜑 → 0 < (♯‘𝑊))
9 elnnnn0b 12207 . . . . . . 7 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ 0 < (♯‘𝑊)))
107, 8, 9sylanbrc 582 . . . . . 6 (𝜑 → (♯‘𝑊) ∈ ℕ)
11 elfz1end 13215 . . . . . 6 ((♯‘𝑊) ∈ ℕ ↔ (♯‘𝑊) ∈ (1...(♯‘𝑊)))
1210, 11sylib 217 . . . . 5 (𝜑 → (♯‘𝑊) ∈ (1...(♯‘𝑊)))
13 fz1fzo0m1 13363 . . . . 5 ((♯‘𝑊) ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
1412, 13syl 17 . . . 4 (𝜑 → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
155, 14eqeltrd 2839 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
161, 2, 3, 4, 15cycpmfvlem 31281 . 2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
17 df-f1 6423 . . . . 5 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
184, 17sylib 217 . . . 4 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1918simprd 495 . . 3 (𝜑 → Fun 𝑊)
20 wrdfn 14159 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
213, 20syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
22 fnfvelrn 6940 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ ran 𝑊)
2321, 15, 22syl2anc 583 . . . 4 (𝜑 → (𝑊𝑁) ∈ ran 𝑊)
24 df-rn 5591 . . . 4 ran 𝑊 = dom 𝑊
2523, 24eleqtrdi 2849 . . 3 (𝜑 → (𝑊𝑁) ∈ dom 𝑊)
26 fvco 6848 . . 3 ((Fun 𝑊 ∧ (𝑊𝑁) ∈ dom 𝑊) → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
2719, 25, 26syl2anc 583 . 2 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
28 f1f1orn 6711 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
294, 28syl 17 . . . . 5 (𝜑𝑊:dom 𝑊1-1-onto→ran 𝑊)
3021fndmd 6522 . . . . . 6 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3115, 30eleqtrrd 2842 . . . . 5 (𝜑𝑁 ∈ dom 𝑊)
32 f1ocnvfv1 7129 . . . . 5 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝑁 ∈ dom 𝑊) → (𝑊‘(𝑊𝑁)) = 𝑁)
3329, 31, 32syl2anc 583 . . . 4 (𝜑 → (𝑊‘(𝑊𝑁)) = 𝑁)
3433fveq2d 6760 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = ((𝑊 cyclShift 1)‘𝑁))
35 1zzd 12281 . . . 4 (𝜑 → 1 ∈ ℤ)
36 cshwidxmod 14444 . . . 4 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
373, 35, 15, 36syl3anc 1369 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
38 fzossfz 13334 . . . . . . . 8 (0..^(♯‘𝑊)) ⊆ (0...(♯‘𝑊))
39 fzssz 13187 . . . . . . . 8 (0...(♯‘𝑊)) ⊆ ℤ
4038, 39sstri 3926 . . . . . . 7 (0..^(♯‘𝑊)) ⊆ ℤ
4140, 15sselid 3915 . . . . . 6 (𝜑𝑁 ∈ ℤ)
4241zred 12355 . . . . 5 (𝜑𝑁 ∈ ℝ)
4310nnrpd 12699 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℝ+)
445oveq1d 7270 . . . . . 6 (𝜑 → (𝑁 mod (♯‘𝑊)) = (((♯‘𝑊) − 1) mod (♯‘𝑊)))
45 zmodidfzoimp 13549 . . . . . . 7 (((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)) → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
4614, 45syl 17 . . . . . 6 (𝜑 → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
4744, 46eqtrd 2778 . . . . 5 (𝜑 → (𝑁 mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
48 modm1p1mod0 13570 . . . . . 6 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((𝑁 mod (♯‘𝑊)) = ((♯‘𝑊) − 1) → ((𝑁 + 1) mod (♯‘𝑊)) = 0))
4948imp 406 . . . . 5 (((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (𝑁 mod (♯‘𝑊)) = ((♯‘𝑊) − 1)) → ((𝑁 + 1) mod (♯‘𝑊)) = 0)
5042, 43, 47, 49syl21anc 834 . . . 4 (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = 0)
5150fveq2d 6760 . . 3 (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘0))
5234, 37, 513eqtrd 2782 . 2 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = (𝑊‘0))
5316, 27, 523eqtrd 2782 1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  ccnv 5579  dom cdm 5580  ran crn 5581  ccom 5584  Fun wfun 6412   Fn wfn 6413  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cmin 11135  cn 11903  0cn0 12163  cz 12249  +crp 12659  ...cfz 13168  ..^cfzo 13311   mod cmo 13517  chash 13972  Word cword 14145   cyclShift ccsh 14429  toCycctocyc 31275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-hash 13973  df-word 14146  df-concat 14202  df-substr 14282  df-pfx 14312  df-csh 14430  df-tocyc 31276
This theorem is referenced by:  cyc2fv2  31291  cycpmco2lem4  31298  cycpmco2lem5  31299  cyc3fv3  31308  cycpmrn  31312
  Copyright terms: Public domain W3C validator