Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshinj Structured version   Visualization version   GIF version

Theorem cshinj 14173
 Description: If a word is injectiv (regarded as function), the cyclically shifted word is also injective. (Contributed by AV, 14-Mar-2021.)
Assertion
Ref Expression
cshinj ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → Fun 𝐺))

Proof of Theorem cshinj
StepHypRef Expression
1 wrdf 13871 . . . . . . 7 (𝐹 ∈ Word 𝐴𝐹:(0..^(♯‘𝐹))⟶𝐴)
2 df-f1 6348 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))–1-1𝐴 ↔ (𝐹:(0..^(♯‘𝐹))⟶𝐴 ∧ Fun 𝐹))
32biimpri 231 . . . . . . 7 ((𝐹:(0..^(♯‘𝐹))⟶𝐴 ∧ Fun 𝐹) → 𝐹:(0..^(♯‘𝐹))–1-1𝐴)
41, 3sylan 583 . . . . . 6 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹) → 𝐹:(0..^(♯‘𝐹))–1-1𝐴)
543adant3 1129 . . . . 5 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → 𝐹:(0..^(♯‘𝐹))–1-1𝐴)
65adantr 484 . . . 4 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐹:(0..^(♯‘𝐹))–1-1𝐴)
7 simpl3 1190 . . . 4 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝑆 ∈ ℤ)
8 simpr 488 . . . 4 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺 = (𝐹 cyclShift 𝑆))
9 cshf1 14172 . . . 4 ((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴)
106, 7, 8, 9syl3anc 1368 . . 3 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴)
1110ex 416 . 2 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴))
12 df-f1 6348 . . 3 (𝐺:(0..^(♯‘𝐹))–1-1𝐴 ↔ (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ Fun 𝐺))
1312simprbi 500 . 2 (𝐺:(0..^(♯‘𝐹))–1-1𝐴 → Fun 𝐺)
1411, 13syl6 35 1 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → Fun 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ◡ccnv 5541  Fun wfun 6337  ⟶wf 6339  –1-1→wf1 6340  ‘cfv 6343  (class class class)co 7149  0cc0 10535  ℤcz 11978  ..^cfzo 13037  ♯chash 13695  Word cword 13866   cyclShift ccsh 14150 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-fz 12895  df-fzo 13038  df-fl 13166  df-mod 13242  df-hash 13696  df-word 13867  df-concat 13923  df-substr 14003  df-pfx 14033  df-csh 14151 This theorem is referenced by:  crctcshtrl  27615  cycpmcl  30793
 Copyright terms: Public domain W3C validator