MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshinj Structured version   Visualization version   GIF version

Theorem cshinj 14776
Description: If a word is injectiv (regarded as function), the cyclically shifted word is also injective. (Contributed by AV, 14-Mar-2021.)
Assertion
Ref Expression
cshinj ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → Fun 𝐺))

Proof of Theorem cshinj
StepHypRef Expression
1 wrdf 14483 . . . . . . 7 (𝐹 ∈ Word 𝐴𝐹:(0..^(♯‘𝐹))⟶𝐴)
2 df-f1 6516 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))–1-1𝐴 ↔ (𝐹:(0..^(♯‘𝐹))⟶𝐴 ∧ Fun 𝐹))
32biimpri 228 . . . . . . 7 ((𝐹:(0..^(♯‘𝐹))⟶𝐴 ∧ Fun 𝐹) → 𝐹:(0..^(♯‘𝐹))–1-1𝐴)
41, 3sylan 580 . . . . . 6 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹) → 𝐹:(0..^(♯‘𝐹))–1-1𝐴)
543adant3 1132 . . . . 5 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → 𝐹:(0..^(♯‘𝐹))–1-1𝐴)
65adantr 480 . . . 4 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐹:(0..^(♯‘𝐹))–1-1𝐴)
7 simpl3 1194 . . . 4 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝑆 ∈ ℤ)
8 simpr 484 . . . 4 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺 = (𝐹 cyclShift 𝑆))
9 cshf1 14775 . . . 4 ((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴)
106, 7, 8, 9syl3anc 1373 . . 3 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴)
1110ex 412 . 2 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴))
12 df-f1 6516 . . 3 (𝐺:(0..^(♯‘𝐹))–1-1𝐴 ↔ (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ Fun 𝐺))
1312simprbi 496 . 2 (𝐺:(0..^(♯‘𝐹))–1-1𝐴 → Fun 𝐺)
1411, 13syl6 35 1 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → Fun 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ccnv 5637  Fun wfun 6505  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  0cc0 11068  cz 12529  ..^cfzo 13615  chash 14295  Word cword 14478   cyclShift ccsh 14753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-hash 14296  df-word 14479  df-concat 14536  df-substr 14606  df-pfx 14636  df-csh 14754
This theorem is referenced by:  crctcshtrl  29753  cycpmcl  33073
  Copyright terms: Public domain W3C validator