MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshinj Structured version   Visualization version   GIF version

Theorem cshinj 14745
Description: If a word is injectiv (regarded as function), the cyclically shifted word is also injective. (Contributed by AV, 14-Mar-2021.)
Assertion
Ref Expression
cshinj ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → Fun 𝐺))

Proof of Theorem cshinj
StepHypRef Expression
1 wrdf 14453 . . . . . . 7 (𝐹 ∈ Word 𝐴𝐹:(0..^(♯‘𝐹))⟶𝐴)
2 df-f1 6538 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))–1-1𝐴 ↔ (𝐹:(0..^(♯‘𝐹))⟶𝐴 ∧ Fun 𝐹))
32biimpri 227 . . . . . . 7 ((𝐹:(0..^(♯‘𝐹))⟶𝐴 ∧ Fun 𝐹) → 𝐹:(0..^(♯‘𝐹))–1-1𝐴)
41, 3sylan 580 . . . . . 6 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹) → 𝐹:(0..^(♯‘𝐹))–1-1𝐴)
543adant3 1132 . . . . 5 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → 𝐹:(0..^(♯‘𝐹))–1-1𝐴)
65adantr 481 . . . 4 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐹:(0..^(♯‘𝐹))–1-1𝐴)
7 simpl3 1193 . . . 4 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝑆 ∈ ℤ)
8 simpr 485 . . . 4 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺 = (𝐹 cyclShift 𝑆))
9 cshf1 14744 . . . 4 ((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴)
106, 7, 8, 9syl3anc 1371 . . 3 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴)
1110ex 413 . 2 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴))
12 df-f1 6538 . . 3 (𝐺:(0..^(♯‘𝐹))–1-1𝐴 ↔ (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ Fun 𝐺))
1312simprbi 497 . 2 (𝐺:(0..^(♯‘𝐹))–1-1𝐴 → Fun 𝐺)
1411, 13syl6 35 1 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → Fun 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  ccnv 5669  Fun wfun 6527  wf 6529  1-1wf1 6530  cfv 6533  (class class class)co 7394  0cc0 11094  cz 12542  ..^cfzo 13611  chash 14274  Word cword 14448   cyclShift ccsh 14722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-pre-sup 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-sup 9421  df-inf 9422  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-nn 12197  df-2 12259  df-n0 12457  df-z 12543  df-uz 12807  df-rp 12959  df-fz 13469  df-fzo 13612  df-fl 13741  df-mod 13819  df-hash 14275  df-word 14449  df-concat 14505  df-substr 14575  df-pfx 14605  df-csh 14723
This theorem is referenced by:  crctcshtrl  29006  cycpmcl  32210
  Copyright terms: Public domain W3C validator