| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmfv1 | Structured version Visualization version GIF version | ||
| Description: Value of a cycle function for any element but the last. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
| Ref | Expression |
|---|---|
| tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
| tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| cycpmfv1.1 | ⊢ (𝜑 → 𝑁 ∈ (0..^((♯‘𝑊) − 1))) |
| Ref | Expression |
|---|---|
| cycpmfv1 | ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (𝑊‘(𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tocycval.1 | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | tocycfv.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | tocycfv.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
| 4 | tocycfv.1 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
| 5 | lencl 14538 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0) | |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
| 7 | 6 | nn0zd 12606 | . . . . 5 ⊢ (𝜑 → (♯‘𝑊) ∈ ℤ) |
| 8 | fzossrbm1 13694 | . . . . 5 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊))) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊))) |
| 10 | cycpmfv1.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^((♯‘𝑊) − 1))) | |
| 11 | 9, 10 | sseldd 3957 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑊))) |
| 12 | 1, 2, 3, 4, 11 | cycpmfvlem 33041 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁))) |
| 13 | df-f1 6532 | . . . . 5 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
| 14 | 4, 13 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) |
| 15 | 14 | simprd 495 | . . 3 ⊢ (𝜑 → Fun ◡𝑊) |
| 16 | wrdfn 14533 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐷 → 𝑊 Fn (0..^(♯‘𝑊))) | |
| 17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 Fn (0..^(♯‘𝑊))) |
| 18 | fnfvelrn 7066 | . . . . 5 ⊢ ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑁) ∈ ran 𝑊) | |
| 19 | 17, 11, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑊‘𝑁) ∈ ran 𝑊) |
| 20 | df-rn 5662 | . . . 4 ⊢ ran 𝑊 = dom ◡𝑊 | |
| 21 | 19, 20 | eleqtrdi 2843 | . . 3 ⊢ (𝜑 → (𝑊‘𝑁) ∈ dom ◡𝑊) |
| 22 | fvco 6973 | . . 3 ⊢ ((Fun ◡𝑊 ∧ (𝑊‘𝑁) ∈ dom ◡𝑊) → (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁)) = ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁)))) | |
| 23 | 15, 21, 22 | syl2anc 584 | . 2 ⊢ (𝜑 → (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁)) = ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁)))) |
| 24 | f1f1orn 6825 | . . . . . 6 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) | |
| 25 | 4, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) |
| 26 | 17 | fndmd 6639 | . . . . . 6 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 27 | 11, 26 | eleqtrrd 2836 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ dom 𝑊) |
| 28 | f1ocnvfv1 7264 | . . . . 5 ⊢ ((𝑊:dom 𝑊–1-1-onto→ran 𝑊 ∧ 𝑁 ∈ dom 𝑊) → (◡𝑊‘(𝑊‘𝑁)) = 𝑁) | |
| 29 | 25, 27, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (◡𝑊‘(𝑊‘𝑁)) = 𝑁) |
| 30 | 29 | fveq2d 6876 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁))) = ((𝑊 cyclShift 1)‘𝑁)) |
| 31 | 1zzd 12615 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 32 | cshwidxmod 14808 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊)))) | |
| 33 | 3, 31, 11, 32 | syl3anc 1372 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊)))) |
| 34 | fzo0ss1 13695 | . . . . . 6 ⊢ (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)) | |
| 35 | fzoaddel2 13725 | . . . . . . 7 ⊢ ((𝑁 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 + 1) ∈ (1..^(♯‘𝑊))) | |
| 36 | 10, 7, 31, 35 | syl3anc 1372 | . . . . . 6 ⊢ (𝜑 → (𝑁 + 1) ∈ (1..^(♯‘𝑊))) |
| 37 | 34, 36 | sselid 3954 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ (0..^(♯‘𝑊))) |
| 38 | zmodidfzoimp 13907 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (0..^(♯‘𝑊)) → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1)) | |
| 39 | 37, 38 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1)) |
| 40 | 39 | fveq2d 6876 | . . 3 ⊢ (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘(𝑁 + 1))) |
| 41 | 30, 33, 40 | 3eqtrd 2773 | . 2 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁))) = (𝑊‘(𝑁 + 1))) |
| 42 | 12, 23, 41 | 3eqtrd 2773 | 1 ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (𝑊‘(𝑁 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3924 ◡ccnv 5650 dom cdm 5651 ran crn 5652 ∘ ccom 5655 Fun wfun 6521 Fn wfn 6522 ⟶wf 6523 –1-1→wf1 6524 –1-1-onto→wf1o 6526 ‘cfv 6527 (class class class)co 7399 0cc0 11121 1c1 11122 + caddc 11124 − cmin 11458 ℕ0cn0 12493 ℤcz 12580 ..^cfzo 13660 mod cmo 13875 ♯chash 14336 Word cword 14519 cyclShift ccsh 14793 toCycctocyc 33035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9448 df-inf 9449 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-n0 12494 df-z 12581 df-uz 12845 df-rp 13001 df-fz 13514 df-fzo 13661 df-fl 13798 df-mod 13876 df-hash 14337 df-word 14520 df-concat 14576 df-substr 14646 df-pfx 14676 df-csh 14794 df-tocyc 33036 |
| This theorem is referenced by: cyc2fv1 33050 cycpmco2lem4 33058 cycpmco2lem6 33060 cycpmco2lem7 33061 cycpmco2 33062 cyc3fv1 33066 cyc3fv2 33067 cycpmrn 33072 |
| Copyright terms: Public domain | W3C validator |