| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmfv1 | Structured version Visualization version GIF version | ||
| Description: Value of a cycle function for any element but the last. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
| Ref | Expression |
|---|---|
| tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
| tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| cycpmfv1.1 | ⊢ (𝜑 → 𝑁 ∈ (0..^((♯‘𝑊) − 1))) |
| Ref | Expression |
|---|---|
| cycpmfv1 | ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (𝑊‘(𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tocycval.1 | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | tocycfv.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | tocycfv.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
| 4 | tocycfv.1 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
| 5 | lencl 14442 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0) | |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
| 7 | 6 | nn0zd 12500 | . . . . 5 ⊢ (𝜑 → (♯‘𝑊) ∈ ℤ) |
| 8 | fzossrbm1 13590 | . . . . 5 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊))) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊))) |
| 10 | cycpmfv1.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^((♯‘𝑊) − 1))) | |
| 11 | 9, 10 | sseldd 3931 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑊))) |
| 12 | 1, 2, 3, 4, 11 | cycpmfvlem 33088 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁))) |
| 13 | df-f1 6491 | . . . . 5 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
| 14 | 4, 13 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) |
| 15 | 14 | simprd 495 | . . 3 ⊢ (𝜑 → Fun ◡𝑊) |
| 16 | wrdfn 14437 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐷 → 𝑊 Fn (0..^(♯‘𝑊))) | |
| 17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 Fn (0..^(♯‘𝑊))) |
| 18 | fnfvelrn 7019 | . . . . 5 ⊢ ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑁) ∈ ran 𝑊) | |
| 19 | 17, 11, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑊‘𝑁) ∈ ran 𝑊) |
| 20 | df-rn 5630 | . . . 4 ⊢ ran 𝑊 = dom ◡𝑊 | |
| 21 | 19, 20 | eleqtrdi 2843 | . . 3 ⊢ (𝜑 → (𝑊‘𝑁) ∈ dom ◡𝑊) |
| 22 | fvco 6926 | . . 3 ⊢ ((Fun ◡𝑊 ∧ (𝑊‘𝑁) ∈ dom ◡𝑊) → (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁)) = ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁)))) | |
| 23 | 15, 21, 22 | syl2anc 584 | . 2 ⊢ (𝜑 → (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁)) = ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁)))) |
| 24 | f1f1orn 6779 | . . . . . 6 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) | |
| 25 | 4, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) |
| 26 | 17 | fndmd 6591 | . . . . . 6 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 27 | 11, 26 | eleqtrrd 2836 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ dom 𝑊) |
| 28 | f1ocnvfv1 7216 | . . . . 5 ⊢ ((𝑊:dom 𝑊–1-1-onto→ran 𝑊 ∧ 𝑁 ∈ dom 𝑊) → (◡𝑊‘(𝑊‘𝑁)) = 𝑁) | |
| 29 | 25, 27, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (◡𝑊‘(𝑊‘𝑁)) = 𝑁) |
| 30 | 29 | fveq2d 6832 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁))) = ((𝑊 cyclShift 1)‘𝑁)) |
| 31 | 1zzd 12509 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 32 | cshwidxmod 14712 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊)))) | |
| 33 | 3, 31, 11, 32 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊)))) |
| 34 | fzo0ss1 13591 | . . . . . 6 ⊢ (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)) | |
| 35 | fzoaddel2 13622 | . . . . . . 7 ⊢ ((𝑁 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 + 1) ∈ (1..^(♯‘𝑊))) | |
| 36 | 10, 7, 31, 35 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑁 + 1) ∈ (1..^(♯‘𝑊))) |
| 37 | 34, 36 | sselid 3928 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ (0..^(♯‘𝑊))) |
| 38 | zmodidfzoimp 13807 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (0..^(♯‘𝑊)) → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1)) | |
| 39 | 37, 38 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1)) |
| 40 | 39 | fveq2d 6832 | . . 3 ⊢ (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘(𝑁 + 1))) |
| 41 | 30, 33, 40 | 3eqtrd 2772 | . 2 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁))) = (𝑊‘(𝑁 + 1))) |
| 42 | 12, 23, 41 | 3eqtrd 2772 | 1 ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (𝑊‘(𝑁 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ◡ccnv 5618 dom cdm 5619 ran crn 5620 ∘ ccom 5623 Fun wfun 6480 Fn wfn 6481 ⟶wf 6482 –1-1→wf1 6483 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 + caddc 11016 − cmin 11351 ℕ0cn0 12388 ℤcz 12475 ..^cfzo 13556 mod cmo 13775 ♯chash 14239 Word cword 14422 cyclShift ccsh 14697 toCycctocyc 33082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-hash 14240 df-word 14423 df-concat 14480 df-substr 14551 df-pfx 14581 df-csh 14698 df-tocyc 33083 |
| This theorem is referenced by: cyc2fv1 33097 cycpmco2lem4 33105 cycpmco2lem6 33107 cycpmco2lem7 33108 cycpmco2 33109 cyc3fv1 33113 cyc3fv2 33114 cycpmrn 33119 |
| Copyright terms: Public domain | W3C validator |