Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmfv1 Structured version   Visualization version   GIF version

Theorem cycpmfv1 32740
Description: Value of a cycle function for any element but the last. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmfv1.1 (𝜑𝑁 ∈ (0..^((♯‘𝑊) − 1)))
Assertion
Ref Expression
cycpmfv1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘(𝑁 + 1)))

Proof of Theorem cycpmfv1
StepHypRef Expression
1 tocycval.1 . . 3 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . 3 (𝜑𝐷𝑉)
3 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
5 lencl 14480 . . . . . . 7 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
63, 5syl 17 . . . . . 6 (𝜑 → (♯‘𝑊) ∈ ℕ0)
76nn0zd 12581 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℤ)
8 fzossrbm1 13658 . . . . 5 ((♯‘𝑊) ∈ ℤ → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
97, 8syl 17 . . . 4 (𝜑 → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
10 cycpmfv1.1 . . . 4 (𝜑𝑁 ∈ (0..^((♯‘𝑊) − 1)))
119, 10sseldd 3975 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
121, 2, 3, 4, 11cycpmfvlem 32739 . 2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
13 df-f1 6538 . . . . 5 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
144, 13sylib 217 . . . 4 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1514simprd 495 . . 3 (𝜑 → Fun 𝑊)
16 wrdfn 14475 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
173, 16syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
18 fnfvelrn 7072 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ ran 𝑊)
1917, 11, 18syl2anc 583 . . . 4 (𝜑 → (𝑊𝑁) ∈ ran 𝑊)
20 df-rn 5677 . . . 4 ran 𝑊 = dom 𝑊
2119, 20eleqtrdi 2835 . . 3 (𝜑 → (𝑊𝑁) ∈ dom 𝑊)
22 fvco 6979 . . 3 ((Fun 𝑊 ∧ (𝑊𝑁) ∈ dom 𝑊) → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
2315, 21, 22syl2anc 583 . 2 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
24 f1f1orn 6834 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
254, 24syl 17 . . . . 5 (𝜑𝑊:dom 𝑊1-1-onto→ran 𝑊)
2617fndmd 6644 . . . . . 6 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2711, 26eleqtrrd 2828 . . . . 5 (𝜑𝑁 ∈ dom 𝑊)
28 f1ocnvfv1 7266 . . . . 5 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝑁 ∈ dom 𝑊) → (𝑊‘(𝑊𝑁)) = 𝑁)
2925, 27, 28syl2anc 583 . . . 4 (𝜑 → (𝑊‘(𝑊𝑁)) = 𝑁)
3029fveq2d 6885 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = ((𝑊 cyclShift 1)‘𝑁))
31 1zzd 12590 . . . 4 (𝜑 → 1 ∈ ℤ)
32 cshwidxmod 14750 . . . 4 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
333, 31, 11, 32syl3anc 1368 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
34 fzo0ss1 13659 . . . . . 6 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
35 fzoaddel2 13685 . . . . . . 7 ((𝑁 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 + 1) ∈ (1..^(♯‘𝑊)))
3610, 7, 31, 35syl3anc 1368 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ (1..^(♯‘𝑊)))
3734, 36sselid 3972 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (0..^(♯‘𝑊)))
38 zmodidfzoimp 13863 . . . . 5 ((𝑁 + 1) ∈ (0..^(♯‘𝑊)) → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1))
3937, 38syl 17 . . . 4 (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1))
4039fveq2d 6885 . . 3 (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘(𝑁 + 1)))
4130, 33, 403eqtrd 2768 . 2 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = (𝑊‘(𝑁 + 1)))
4212, 23, 413eqtrd 2768 1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wss 3940  ccnv 5665  dom cdm 5666  ran crn 5667  ccom 5670  Fun wfun 6527   Fn wfn 6528  wf 6529  1-1wf1 6530  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  0cc0 11106  1c1 11107   + caddc 11109  cmin 11441  0cn0 12469  cz 12555  ..^cfzo 13624   mod cmo 13831  chash 14287  Word cword 14461   cyclShift ccsh 14735  toCycctocyc 32733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-hash 14288  df-word 14462  df-concat 14518  df-substr 14588  df-pfx 14618  df-csh 14736  df-tocyc 32734
This theorem is referenced by:  cyc2fv1  32748  cycpmco2lem4  32756  cycpmco2lem6  32758  cycpmco2lem7  32759  cycpmco2  32760  cyc3fv1  32764  cyc3fv2  32765  cycpmrn  32770
  Copyright terms: Public domain W3C validator