Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmfv1 Structured version   Visualization version   GIF version

Theorem cycpmfv1 33042
Description: Value of a cycle function for any element but the last. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmfv1.1 (𝜑𝑁 ∈ (0..^((♯‘𝑊) − 1)))
Assertion
Ref Expression
cycpmfv1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘(𝑁 + 1)))

Proof of Theorem cycpmfv1
StepHypRef Expression
1 tocycval.1 . . 3 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . 3 (𝜑𝐷𝑉)
3 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
5 lencl 14538 . . . . . . 7 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
63, 5syl 17 . . . . . 6 (𝜑 → (♯‘𝑊) ∈ ℕ0)
76nn0zd 12606 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℤ)
8 fzossrbm1 13694 . . . . 5 ((♯‘𝑊) ∈ ℤ → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
97, 8syl 17 . . . 4 (𝜑 → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
10 cycpmfv1.1 . . . 4 (𝜑𝑁 ∈ (0..^((♯‘𝑊) − 1)))
119, 10sseldd 3957 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
121, 2, 3, 4, 11cycpmfvlem 33041 . 2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
13 df-f1 6532 . . . . 5 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
144, 13sylib 218 . . . 4 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1514simprd 495 . . 3 (𝜑 → Fun 𝑊)
16 wrdfn 14533 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
173, 16syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
18 fnfvelrn 7066 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ ran 𝑊)
1917, 11, 18syl2anc 584 . . . 4 (𝜑 → (𝑊𝑁) ∈ ran 𝑊)
20 df-rn 5662 . . . 4 ran 𝑊 = dom 𝑊
2119, 20eleqtrdi 2843 . . 3 (𝜑 → (𝑊𝑁) ∈ dom 𝑊)
22 fvco 6973 . . 3 ((Fun 𝑊 ∧ (𝑊𝑁) ∈ dom 𝑊) → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
2315, 21, 22syl2anc 584 . 2 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
24 f1f1orn 6825 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
254, 24syl 17 . . . . 5 (𝜑𝑊:dom 𝑊1-1-onto→ran 𝑊)
2617fndmd 6639 . . . . . 6 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2711, 26eleqtrrd 2836 . . . . 5 (𝜑𝑁 ∈ dom 𝑊)
28 f1ocnvfv1 7264 . . . . 5 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝑁 ∈ dom 𝑊) → (𝑊‘(𝑊𝑁)) = 𝑁)
2925, 27, 28syl2anc 584 . . . 4 (𝜑 → (𝑊‘(𝑊𝑁)) = 𝑁)
3029fveq2d 6876 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = ((𝑊 cyclShift 1)‘𝑁))
31 1zzd 12615 . . . 4 (𝜑 → 1 ∈ ℤ)
32 cshwidxmod 14808 . . . 4 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
333, 31, 11, 32syl3anc 1372 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
34 fzo0ss1 13695 . . . . . 6 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
35 fzoaddel2 13725 . . . . . . 7 ((𝑁 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 + 1) ∈ (1..^(♯‘𝑊)))
3610, 7, 31, 35syl3anc 1372 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ (1..^(♯‘𝑊)))
3734, 36sselid 3954 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (0..^(♯‘𝑊)))
38 zmodidfzoimp 13907 . . . . 5 ((𝑁 + 1) ∈ (0..^(♯‘𝑊)) → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1))
3937, 38syl 17 . . . 4 (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1))
4039fveq2d 6876 . . 3 (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘(𝑁 + 1)))
4130, 33, 403eqtrd 2773 . 2 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = (𝑊‘(𝑁 + 1)))
4212, 23, 413eqtrd 2773 1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wss 3924  ccnv 5650  dom cdm 5651  ran crn 5652  ccom 5655  Fun wfun 6521   Fn wfn 6522  wf 6523  1-1wf1 6524  1-1-ontowf1o 6526  cfv 6527  (class class class)co 7399  0cc0 11121  1c1 11122   + caddc 11124  cmin 11458  0cn0 12493  cz 12580  ..^cfzo 13660   mod cmo 13875  chash 14336  Word cword 14519   cyclShift ccsh 14793  toCycctocyc 33035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9448  df-inf 9449  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-fz 13514  df-fzo 13661  df-fl 13798  df-mod 13876  df-hash 14337  df-word 14520  df-concat 14576  df-substr 14646  df-pfx 14676  df-csh 14794  df-tocyc 33036
This theorem is referenced by:  cyc2fv1  33050  cycpmco2lem4  33058  cycpmco2lem6  33060  cycpmco2lem7  33061  cycpmco2  33062  cyc3fv1  33066  cyc3fv2  33067  cycpmrn  33072
  Copyright terms: Public domain W3C validator