| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmfv1 | Structured version Visualization version GIF version | ||
| Description: Value of a cycle function for any element but the last. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
| Ref | Expression |
|---|---|
| tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
| tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| cycpmfv1.1 | ⊢ (𝜑 → 𝑁 ∈ (0..^((♯‘𝑊) − 1))) |
| Ref | Expression |
|---|---|
| cycpmfv1 | ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (𝑊‘(𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tocycval.1 | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | tocycfv.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | tocycfv.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
| 4 | tocycfv.1 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
| 5 | lencl 14437 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0) | |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
| 7 | 6 | nn0zd 12491 | . . . . 5 ⊢ (𝜑 → (♯‘𝑊) ∈ ℤ) |
| 8 | fzossrbm1 13585 | . . . . 5 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊))) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊))) |
| 10 | cycpmfv1.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^((♯‘𝑊) − 1))) | |
| 11 | 9, 10 | sseldd 3935 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑊))) |
| 12 | 1, 2, 3, 4, 11 | cycpmfvlem 33076 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁))) |
| 13 | df-f1 6486 | . . . . 5 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
| 14 | 4, 13 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) |
| 15 | 14 | simprd 495 | . . 3 ⊢ (𝜑 → Fun ◡𝑊) |
| 16 | wrdfn 14432 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐷 → 𝑊 Fn (0..^(♯‘𝑊))) | |
| 17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 Fn (0..^(♯‘𝑊))) |
| 18 | fnfvelrn 7013 | . . . . 5 ⊢ ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑁) ∈ ran 𝑊) | |
| 19 | 17, 11, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑊‘𝑁) ∈ ran 𝑊) |
| 20 | df-rn 5627 | . . . 4 ⊢ ran 𝑊 = dom ◡𝑊 | |
| 21 | 19, 20 | eleqtrdi 2841 | . . 3 ⊢ (𝜑 → (𝑊‘𝑁) ∈ dom ◡𝑊) |
| 22 | fvco 6920 | . . 3 ⊢ ((Fun ◡𝑊 ∧ (𝑊‘𝑁) ∈ dom ◡𝑊) → (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁)) = ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁)))) | |
| 23 | 15, 21, 22 | syl2anc 584 | . 2 ⊢ (𝜑 → (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁)) = ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁)))) |
| 24 | f1f1orn 6774 | . . . . . 6 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) | |
| 25 | 4, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) |
| 26 | 17 | fndmd 6586 | . . . . . 6 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 27 | 11, 26 | eleqtrrd 2834 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ dom 𝑊) |
| 28 | f1ocnvfv1 7210 | . . . . 5 ⊢ ((𝑊:dom 𝑊–1-1-onto→ran 𝑊 ∧ 𝑁 ∈ dom 𝑊) → (◡𝑊‘(𝑊‘𝑁)) = 𝑁) | |
| 29 | 25, 27, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (◡𝑊‘(𝑊‘𝑁)) = 𝑁) |
| 30 | 29 | fveq2d 6826 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁))) = ((𝑊 cyclShift 1)‘𝑁)) |
| 31 | 1zzd 12500 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 32 | cshwidxmod 14707 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊)))) | |
| 33 | 3, 31, 11, 32 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊)))) |
| 34 | fzo0ss1 13586 | . . . . . 6 ⊢ (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)) | |
| 35 | fzoaddel2 13617 | . . . . . . 7 ⊢ ((𝑁 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 + 1) ∈ (1..^(♯‘𝑊))) | |
| 36 | 10, 7, 31, 35 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑁 + 1) ∈ (1..^(♯‘𝑊))) |
| 37 | 34, 36 | sselid 3932 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ (0..^(♯‘𝑊))) |
| 38 | zmodidfzoimp 13802 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (0..^(♯‘𝑊)) → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1)) | |
| 39 | 37, 38 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1)) |
| 40 | 39 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘(𝑁 + 1))) |
| 41 | 30, 33, 40 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁))) = (𝑊‘(𝑁 + 1))) |
| 42 | 12, 23, 41 | 3eqtrd 2770 | 1 ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (𝑊‘(𝑁 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ◡ccnv 5615 dom cdm 5616 ran crn 5617 ∘ ccom 5620 Fun wfun 6475 Fn wfn 6476 ⟶wf 6477 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 + caddc 11006 − cmin 11341 ℕ0cn0 12378 ℤcz 12465 ..^cfzo 13551 mod cmo 13770 ♯chash 14234 Word cword 14417 cyclShift ccsh 14692 toCycctocyc 33070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-hash 14235 df-word 14418 df-concat 14475 df-substr 14546 df-pfx 14576 df-csh 14693 df-tocyc 33071 |
| This theorem is referenced by: cyc2fv1 33085 cycpmco2lem4 33093 cycpmco2lem6 33095 cycpmco2lem7 33096 cycpmco2 33097 cyc3fv1 33101 cyc3fv2 33102 cycpmrn 33107 |
| Copyright terms: Public domain | W3C validator |