Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmfv1 Structured version   Visualization version   GIF version

Theorem cycpmfv1 30910
Description: Value of a cycle function for any element but the last. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmfv1.1 (𝜑𝑁 ∈ (0..^((♯‘𝑊) − 1)))
Assertion
Ref Expression
cycpmfv1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘(𝑁 + 1)))

Proof of Theorem cycpmfv1
StepHypRef Expression
1 tocycval.1 . . 3 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . 3 (𝜑𝐷𝑉)
3 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
5 lencl 13937 . . . . . . 7 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
63, 5syl 17 . . . . . 6 (𝜑 → (♯‘𝑊) ∈ ℕ0)
76nn0zd 12129 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℤ)
8 fzossrbm1 13120 . . . . 5 ((♯‘𝑊) ∈ ℤ → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
97, 8syl 17 . . . 4 (𝜑 → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
10 cycpmfv1.1 . . . 4 (𝜑𝑁 ∈ (0..^((♯‘𝑊) − 1)))
119, 10sseldd 3895 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
121, 2, 3, 4, 11cycpmfvlem 30909 . 2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
13 df-f1 6344 . . . . 5 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
144, 13sylib 221 . . . 4 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1514simprd 499 . . 3 (𝜑 → Fun 𝑊)
16 wrdfn 13932 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
173, 16syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
18 fnfvelrn 6844 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ ran 𝑊)
1917, 11, 18syl2anc 587 . . . 4 (𝜑 → (𝑊𝑁) ∈ ran 𝑊)
20 df-rn 5538 . . . 4 ran 𝑊 = dom 𝑊
2119, 20eleqtrdi 2862 . . 3 (𝜑 → (𝑊𝑁) ∈ dom 𝑊)
22 fvco 6754 . . 3 ((Fun 𝑊 ∧ (𝑊𝑁) ∈ dom 𝑊) → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
2315, 21, 22syl2anc 587 . 2 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
24 f1f1orn 6617 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
254, 24syl 17 . . . . 5 (𝜑𝑊:dom 𝑊1-1-onto→ran 𝑊)
2617fndmd 6442 . . . . . 6 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2711, 26eleqtrrd 2855 . . . . 5 (𝜑𝑁 ∈ dom 𝑊)
28 f1ocnvfv1 7030 . . . . 5 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝑁 ∈ dom 𝑊) → (𝑊‘(𝑊𝑁)) = 𝑁)
2925, 27, 28syl2anc 587 . . . 4 (𝜑 → (𝑊‘(𝑊𝑁)) = 𝑁)
3029fveq2d 6666 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = ((𝑊 cyclShift 1)‘𝑁))
31 1zzd 12057 . . . 4 (𝜑 → 1 ∈ ℤ)
32 cshwidxmod 14217 . . . 4 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
333, 31, 11, 32syl3anc 1368 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
34 fzo0ss1 13121 . . . . . 6 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
35 fzoaddel2 13147 . . . . . . 7 ((𝑁 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 + 1) ∈ (1..^(♯‘𝑊)))
3610, 7, 31, 35syl3anc 1368 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ (1..^(♯‘𝑊)))
3734, 36sseldi 3892 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (0..^(♯‘𝑊)))
38 zmodidfzoimp 13323 . . . . 5 ((𝑁 + 1) ∈ (0..^(♯‘𝑊)) → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1))
3937, 38syl 17 . . . 4 (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1))
4039fveq2d 6666 . . 3 (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘(𝑁 + 1)))
4130, 33, 403eqtrd 2797 . 2 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = (𝑊‘(𝑁 + 1)))
4212, 23, 413eqtrd 2797 1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wss 3860  ccnv 5526  dom cdm 5527  ran crn 5528  ccom 5531  Fun wfun 6333   Fn wfn 6334  wf 6335  1-1wf1 6336  1-1-ontowf1o 6338  cfv 6339  (class class class)co 7155  0cc0 10580  1c1 10581   + caddc 10583  cmin 10913  0cn0 11939  cz 12025  ..^cfzo 13087   mod cmo 13291  chash 13745  Word cword 13918   cyclShift ccsh 14202  toCycctocyc 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-inf 8945  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-n0 11940  df-z 12026  df-uz 12288  df-rp 12436  df-fz 12945  df-fzo 13088  df-fl 13216  df-mod 13292  df-hash 13746  df-word 13919  df-concat 13975  df-substr 14055  df-pfx 14085  df-csh 14203  df-tocyc 30904
This theorem is referenced by:  cyc2fv1  30918  cycpmco2lem4  30926  cycpmco2lem6  30928  cycpmco2lem7  30929  cycpmco2  30930  cyc3fv1  30934  cyc3fv2  30935  cycpmrn  30940
  Copyright terms: Public domain W3C validator