Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmfv1 Structured version   Visualization version   GIF version

Theorem cycpmfv1 33134
Description: Value of a cycle function for any element but the last. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmfv1.1 (𝜑𝑁 ∈ (0..^((♯‘𝑊) − 1)))
Assertion
Ref Expression
cycpmfv1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘(𝑁 + 1)))

Proof of Theorem cycpmfv1
StepHypRef Expression
1 tocycval.1 . . 3 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . 3 (𝜑𝐷𝑉)
3 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
5 lencl 14572 . . . . . . 7 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
63, 5syl 17 . . . . . 6 (𝜑 → (♯‘𝑊) ∈ ℕ0)
76nn0zd 12641 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℤ)
8 fzossrbm1 13729 . . . . 5 ((♯‘𝑊) ∈ ℤ → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
97, 8syl 17 . . . 4 (𝜑 → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
10 cycpmfv1.1 . . . 4 (𝜑𝑁 ∈ (0..^((♯‘𝑊) − 1)))
119, 10sseldd 3983 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
121, 2, 3, 4, 11cycpmfvlem 33133 . 2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
13 df-f1 6565 . . . . 5 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
144, 13sylib 218 . . . 4 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1514simprd 495 . . 3 (𝜑 → Fun 𝑊)
16 wrdfn 14567 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
173, 16syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
18 fnfvelrn 7099 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ ran 𝑊)
1917, 11, 18syl2anc 584 . . . 4 (𝜑 → (𝑊𝑁) ∈ ran 𝑊)
20 df-rn 5695 . . . 4 ran 𝑊 = dom 𝑊
2119, 20eleqtrdi 2850 . . 3 (𝜑 → (𝑊𝑁) ∈ dom 𝑊)
22 fvco 7006 . . 3 ((Fun 𝑊 ∧ (𝑊𝑁) ∈ dom 𝑊) → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
2315, 21, 22syl2anc 584 . 2 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
24 f1f1orn 6858 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
254, 24syl 17 . . . . 5 (𝜑𝑊:dom 𝑊1-1-onto→ran 𝑊)
2617fndmd 6672 . . . . . 6 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2711, 26eleqtrrd 2843 . . . . 5 (𝜑𝑁 ∈ dom 𝑊)
28 f1ocnvfv1 7297 . . . . 5 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝑁 ∈ dom 𝑊) → (𝑊‘(𝑊𝑁)) = 𝑁)
2925, 27, 28syl2anc 584 . . . 4 (𝜑 → (𝑊‘(𝑊𝑁)) = 𝑁)
3029fveq2d 6909 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = ((𝑊 cyclShift 1)‘𝑁))
31 1zzd 12650 . . . 4 (𝜑 → 1 ∈ ℤ)
32 cshwidxmod 14842 . . . 4 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
333, 31, 11, 32syl3anc 1372 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
34 fzo0ss1 13730 . . . . . 6 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
35 fzoaddel2 13760 . . . . . . 7 ((𝑁 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 + 1) ∈ (1..^(♯‘𝑊)))
3610, 7, 31, 35syl3anc 1372 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ (1..^(♯‘𝑊)))
3734, 36sselid 3980 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (0..^(♯‘𝑊)))
38 zmodidfzoimp 13942 . . . . 5 ((𝑁 + 1) ∈ (0..^(♯‘𝑊)) → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1))
3937, 38syl 17 . . . 4 (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1))
4039fveq2d 6909 . . 3 (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘(𝑁 + 1)))
4130, 33, 403eqtrd 2780 . 2 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = (𝑊‘(𝑁 + 1)))
4212, 23, 413eqtrd 2780 1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wss 3950  ccnv 5683  dom cdm 5684  ran crn 5685  ccom 5688  Fun wfun 6554   Fn wfn 6555  wf 6556  1-1wf1 6557  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157   + caddc 11159  cmin 11493  0cn0 12528  cz 12615  ..^cfzo 13695   mod cmo 13910  chash 14370  Word cword 14553   cyclShift ccsh 14827  toCycctocyc 33127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-hash 14371  df-word 14554  df-concat 14610  df-substr 14680  df-pfx 14710  df-csh 14828  df-tocyc 33128
This theorem is referenced by:  cyc2fv1  33142  cycpmco2lem4  33150  cycpmco2lem6  33152  cycpmco2lem7  33153  cycpmco2  33154  cyc3fv1  33158  cyc3fv2  33159  cycpmrn  33164
  Copyright terms: Public domain W3C validator