Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmfv1 | Structured version Visualization version GIF version |
Description: Value of a cycle function for any element but the last. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
Ref | Expression |
---|---|
tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
cycpmfv1.1 | ⊢ (𝜑 → 𝑁 ∈ (0..^((♯‘𝑊) − 1))) |
Ref | Expression |
---|---|
cycpmfv1 | ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (𝑊‘(𝑁 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycval.1 | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
2 | tocycfv.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
3 | tocycfv.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
4 | tocycfv.1 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
5 | lencl 13937 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0) | |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
7 | 6 | nn0zd 12129 | . . . . 5 ⊢ (𝜑 → (♯‘𝑊) ∈ ℤ) |
8 | fzossrbm1 13120 | . . . . 5 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊))) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊))) |
10 | cycpmfv1.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^((♯‘𝑊) − 1))) | |
11 | 9, 10 | sseldd 3895 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑊))) |
12 | 1, 2, 3, 4, 11 | cycpmfvlem 30909 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁))) |
13 | df-f1 6344 | . . . . 5 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
14 | 4, 13 | sylib 221 | . . . 4 ⊢ (𝜑 → (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) |
15 | 14 | simprd 499 | . . 3 ⊢ (𝜑 → Fun ◡𝑊) |
16 | wrdfn 13932 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐷 → 𝑊 Fn (0..^(♯‘𝑊))) | |
17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 Fn (0..^(♯‘𝑊))) |
18 | fnfvelrn 6844 | . . . . 5 ⊢ ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑁) ∈ ran 𝑊) | |
19 | 17, 11, 18 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝑊‘𝑁) ∈ ran 𝑊) |
20 | df-rn 5538 | . . . 4 ⊢ ran 𝑊 = dom ◡𝑊 | |
21 | 19, 20 | eleqtrdi 2862 | . . 3 ⊢ (𝜑 → (𝑊‘𝑁) ∈ dom ◡𝑊) |
22 | fvco 6754 | . . 3 ⊢ ((Fun ◡𝑊 ∧ (𝑊‘𝑁) ∈ dom ◡𝑊) → (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁)) = ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁)))) | |
23 | 15, 21, 22 | syl2anc 587 | . 2 ⊢ (𝜑 → (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁)) = ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁)))) |
24 | f1f1orn 6617 | . . . . . 6 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) | |
25 | 4, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) |
26 | 17 | fndmd 6442 | . . . . . 6 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
27 | 11, 26 | eleqtrrd 2855 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ dom 𝑊) |
28 | f1ocnvfv1 7030 | . . . . 5 ⊢ ((𝑊:dom 𝑊–1-1-onto→ran 𝑊 ∧ 𝑁 ∈ dom 𝑊) → (◡𝑊‘(𝑊‘𝑁)) = 𝑁) | |
29 | 25, 27, 28 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (◡𝑊‘(𝑊‘𝑁)) = 𝑁) |
30 | 29 | fveq2d 6666 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁))) = ((𝑊 cyclShift 1)‘𝑁)) |
31 | 1zzd 12057 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
32 | cshwidxmod 14217 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊)))) | |
33 | 3, 31, 11, 32 | syl3anc 1368 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊)))) |
34 | fzo0ss1 13121 | . . . . . 6 ⊢ (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)) | |
35 | fzoaddel2 13147 | . . . . . . 7 ⊢ ((𝑁 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 + 1) ∈ (1..^(♯‘𝑊))) | |
36 | 10, 7, 31, 35 | syl3anc 1368 | . . . . . 6 ⊢ (𝜑 → (𝑁 + 1) ∈ (1..^(♯‘𝑊))) |
37 | 34, 36 | sseldi 3892 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ (0..^(♯‘𝑊))) |
38 | zmodidfzoimp 13323 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (0..^(♯‘𝑊)) → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1)) | |
39 | 37, 38 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1)) |
40 | 39 | fveq2d 6666 | . . 3 ⊢ (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘(𝑁 + 1))) |
41 | 30, 33, 40 | 3eqtrd 2797 | . 2 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁))) = (𝑊‘(𝑁 + 1))) |
42 | 12, 23, 41 | 3eqtrd 2797 | 1 ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (𝑊‘(𝑁 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 ◡ccnv 5526 dom cdm 5527 ran crn 5528 ∘ ccom 5531 Fun wfun 6333 Fn wfn 6334 ⟶wf 6335 –1-1→wf1 6336 –1-1-onto→wf1o 6338 ‘cfv 6339 (class class class)co 7155 0cc0 10580 1c1 10581 + caddc 10583 − cmin 10913 ℕ0cn0 11939 ℤcz 12025 ..^cfzo 13087 mod cmo 13291 ♯chash 13745 Word cword 13918 cyclShift ccsh 14202 toCycctocyc 30903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-sup 8944 df-inf 8945 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-n0 11940 df-z 12026 df-uz 12288 df-rp 12436 df-fz 12945 df-fzo 13088 df-fl 13216 df-mod 13292 df-hash 13746 df-word 13919 df-concat 13975 df-substr 14055 df-pfx 14085 df-csh 14203 df-tocyc 30904 |
This theorem is referenced by: cyc2fv1 30918 cycpmco2lem4 30926 cycpmco2lem6 30928 cycpmco2lem7 30929 cycpmco2 30930 cyc3fv1 30934 cyc3fv2 30935 cycpmrn 30940 |
Copyright terms: Public domain | W3C validator |