Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmfv1 Structured version   Visualization version   GIF version

Theorem cycpmfv1 33089
Description: Value of a cycle function for any element but the last. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmfv1.1 (𝜑𝑁 ∈ (0..^((♯‘𝑊) − 1)))
Assertion
Ref Expression
cycpmfv1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘(𝑁 + 1)))

Proof of Theorem cycpmfv1
StepHypRef Expression
1 tocycval.1 . . 3 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . 3 (𝜑𝐷𝑉)
3 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
5 lencl 14442 . . . . . . 7 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
63, 5syl 17 . . . . . 6 (𝜑 → (♯‘𝑊) ∈ ℕ0)
76nn0zd 12500 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℤ)
8 fzossrbm1 13590 . . . . 5 ((♯‘𝑊) ∈ ℤ → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
97, 8syl 17 . . . 4 (𝜑 → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊)))
10 cycpmfv1.1 . . . 4 (𝜑𝑁 ∈ (0..^((♯‘𝑊) − 1)))
119, 10sseldd 3931 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
121, 2, 3, 4, 11cycpmfvlem 33088 . 2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
13 df-f1 6491 . . . . 5 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
144, 13sylib 218 . . . 4 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1514simprd 495 . . 3 (𝜑 → Fun 𝑊)
16 wrdfn 14437 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
173, 16syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
18 fnfvelrn 7019 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ ran 𝑊)
1917, 11, 18syl2anc 584 . . . 4 (𝜑 → (𝑊𝑁) ∈ ran 𝑊)
20 df-rn 5630 . . . 4 ran 𝑊 = dom 𝑊
2119, 20eleqtrdi 2843 . . 3 (𝜑 → (𝑊𝑁) ∈ dom 𝑊)
22 fvco 6926 . . 3 ((Fun 𝑊 ∧ (𝑊𝑁) ∈ dom 𝑊) → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
2315, 21, 22syl2anc 584 . 2 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)) = ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))))
24 f1f1orn 6779 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
254, 24syl 17 . . . . 5 (𝜑𝑊:dom 𝑊1-1-onto→ran 𝑊)
2617fndmd 6591 . . . . . 6 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2711, 26eleqtrrd 2836 . . . . 5 (𝜑𝑁 ∈ dom 𝑊)
28 f1ocnvfv1 7216 . . . . 5 ((𝑊:dom 𝑊1-1-onto→ran 𝑊𝑁 ∈ dom 𝑊) → (𝑊‘(𝑊𝑁)) = 𝑁)
2925, 27, 28syl2anc 584 . . . 4 (𝜑 → (𝑊‘(𝑊𝑁)) = 𝑁)
3029fveq2d 6832 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = ((𝑊 cyclShift 1)‘𝑁))
31 1zzd 12509 . . . 4 (𝜑 → 1 ∈ ℤ)
32 cshwidxmod 14712 . . . 4 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
333, 31, 11, 32syl3anc 1373 . . 3 (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊))))
34 fzo0ss1 13591 . . . . . 6 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
35 fzoaddel2 13622 . . . . . . 7 ((𝑁 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 + 1) ∈ (1..^(♯‘𝑊)))
3610, 7, 31, 35syl3anc 1373 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ (1..^(♯‘𝑊)))
3734, 36sselid 3928 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (0..^(♯‘𝑊)))
38 zmodidfzoimp 13807 . . . . 5 ((𝑁 + 1) ∈ (0..^(♯‘𝑊)) → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1))
3937, 38syl 17 . . . 4 (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1))
4039fveq2d 6832 . . 3 (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘(𝑁 + 1)))
4130, 33, 403eqtrd 2772 . 2 (𝜑 → ((𝑊 cyclShift 1)‘(𝑊‘(𝑊𝑁))) = (𝑊‘(𝑁 + 1)))
4212, 23, 413eqtrd 2772 1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (𝑊‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wss 3898  ccnv 5618  dom cdm 5619  ran crn 5620  ccom 5623  Fun wfun 6480   Fn wfn 6481  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016  cmin 11351  0cn0 12388  cz 12475  ..^cfzo 13556   mod cmo 13775  chash 14239  Word cword 14422   cyclShift ccsh 14697  toCycctocyc 33082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-hash 14240  df-word 14423  df-concat 14480  df-substr 14551  df-pfx 14581  df-csh 14698  df-tocyc 33083
This theorem is referenced by:  cyc2fv1  33097  cycpmco2lem4  33105  cycpmco2lem6  33107  cycpmco2lem7  33108  cycpmco2  33109  cyc3fv1  33113  cyc3fv2  33114  cycpmrn  33119
  Copyright terms: Public domain W3C validator