| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmfv1 | Structured version Visualization version GIF version | ||
| Description: Value of a cycle function for any element but the last. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
| Ref | Expression |
|---|---|
| tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
| tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| cycpmfv1.1 | ⊢ (𝜑 → 𝑁 ∈ (0..^((♯‘𝑊) − 1))) |
| Ref | Expression |
|---|---|
| cycpmfv1 | ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (𝑊‘(𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tocycval.1 | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | tocycfv.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | tocycfv.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
| 4 | tocycfv.1 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
| 5 | lencl 14498 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0) | |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
| 7 | 6 | nn0zd 12555 | . . . . 5 ⊢ (𝜑 → (♯‘𝑊) ∈ ℤ) |
| 8 | fzossrbm1 13649 | . . . . 5 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊))) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝑊) − 1)) ⊆ (0..^(♯‘𝑊))) |
| 10 | cycpmfv1.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^((♯‘𝑊) − 1))) | |
| 11 | 9, 10 | sseldd 3947 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑊))) |
| 12 | 1, 2, 3, 4, 11 | cycpmfvlem 33069 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁))) |
| 13 | df-f1 6516 | . . . . 5 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
| 14 | 4, 13 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) |
| 15 | 14 | simprd 495 | . . 3 ⊢ (𝜑 → Fun ◡𝑊) |
| 16 | wrdfn 14493 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐷 → 𝑊 Fn (0..^(♯‘𝑊))) | |
| 17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 Fn (0..^(♯‘𝑊))) |
| 18 | fnfvelrn 7052 | . . . . 5 ⊢ ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑁) ∈ ran 𝑊) | |
| 19 | 17, 11, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑊‘𝑁) ∈ ran 𝑊) |
| 20 | df-rn 5649 | . . . 4 ⊢ ran 𝑊 = dom ◡𝑊 | |
| 21 | 19, 20 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → (𝑊‘𝑁) ∈ dom ◡𝑊) |
| 22 | fvco 6959 | . . 3 ⊢ ((Fun ◡𝑊 ∧ (𝑊‘𝑁) ∈ dom ◡𝑊) → (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁)) = ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁)))) | |
| 23 | 15, 21, 22 | syl2anc 584 | . 2 ⊢ (𝜑 → (((𝑊 cyclShift 1) ∘ ◡𝑊)‘(𝑊‘𝑁)) = ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁)))) |
| 24 | f1f1orn 6811 | . . . . . 6 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) | |
| 25 | 4, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) |
| 26 | 17 | fndmd 6623 | . . . . . 6 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 27 | 11, 26 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ dom 𝑊) |
| 28 | f1ocnvfv1 7251 | . . . . 5 ⊢ ((𝑊:dom 𝑊–1-1-onto→ran 𝑊 ∧ 𝑁 ∈ dom 𝑊) → (◡𝑊‘(𝑊‘𝑁)) = 𝑁) | |
| 29 | 25, 27, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (◡𝑊‘(𝑊‘𝑁)) = 𝑁) |
| 30 | 29 | fveq2d 6862 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁))) = ((𝑊 cyclShift 1)‘𝑁)) |
| 31 | 1zzd 12564 | . . . 4 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 32 | cshwidxmod 14768 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊)))) | |
| 33 | 3, 31, 11, 32 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘𝑁) = (𝑊‘((𝑁 + 1) mod (♯‘𝑊)))) |
| 34 | fzo0ss1 13650 | . . . . . 6 ⊢ (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)) | |
| 35 | fzoaddel2 13681 | . . . . . . 7 ⊢ ((𝑁 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 + 1) ∈ (1..^(♯‘𝑊))) | |
| 36 | 10, 7, 31, 35 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑁 + 1) ∈ (1..^(♯‘𝑊))) |
| 37 | 34, 36 | sselid 3944 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ (0..^(♯‘𝑊))) |
| 38 | zmodidfzoimp 13863 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (0..^(♯‘𝑊)) → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1)) | |
| 39 | 37, 38 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑁 + 1) mod (♯‘𝑊)) = (𝑁 + 1)) |
| 40 | 39 | fveq2d 6862 | . . 3 ⊢ (𝜑 → (𝑊‘((𝑁 + 1) mod (♯‘𝑊))) = (𝑊‘(𝑁 + 1))) |
| 41 | 30, 33, 40 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → ((𝑊 cyclShift 1)‘(◡𝑊‘(𝑊‘𝑁))) = (𝑊‘(𝑁 + 1))) |
| 42 | 12, 23, 41 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ((𝐶‘𝑊)‘(𝑊‘𝑁)) = (𝑊‘(𝑁 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ◡ccnv 5637 dom cdm 5638 ran crn 5639 ∘ ccom 5642 Fun wfun 6505 Fn wfn 6506 ⟶wf 6507 –1-1→wf1 6508 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 − cmin 11405 ℕ0cn0 12442 ℤcz 12529 ..^cfzo 13615 mod cmo 13831 ♯chash 14295 Word cword 14478 cyclShift ccsh 14753 toCycctocyc 33063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-hash 14296 df-word 14479 df-concat 14536 df-substr 14606 df-pfx 14636 df-csh 14754 df-tocyc 33064 |
| This theorem is referenced by: cyc2fv1 33078 cycpmco2lem4 33086 cycpmco2lem6 33088 cycpmco2lem7 33089 cycpmco2 33090 cyc3fv1 33094 cyc3fv2 33095 cycpmrn 33100 |
| Copyright terms: Public domain | W3C validator |