| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0hf | Structured version Visualization version GIF version | ||
| Description: The empty set is a hereditarily finite set. (Contributed by Scott Fenton, 9-Jul-2015.) |
| Ref | Expression |
|---|---|
| 0hf | ⊢ ∅ ∈ Hf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7845 | . . . 4 ⊢ ∅ ∈ ω | |
| 2 | peano2 7846 | . . . 4 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ suc ∅ ∈ ω |
| 4 | 0elpw 5306 | . . . 4 ⊢ ∅ ∈ 𝒫 (𝑅1‘∅) | |
| 5 | 0elon 6375 | . . . . 5 ⊢ ∅ ∈ On | |
| 6 | r1suc 9699 | . . . . 5 ⊢ (∅ ∈ On → (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅)) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅) |
| 8 | 4, 7 | eleqtrri 2827 | . . 3 ⊢ ∅ ∈ (𝑅1‘suc ∅) |
| 9 | fveq2 6840 | . . . . 5 ⊢ (𝑥 = suc ∅ → (𝑅1‘𝑥) = (𝑅1‘suc ∅)) | |
| 10 | 9 | eleq2d 2814 | . . . 4 ⊢ (𝑥 = suc ∅ → (∅ ∈ (𝑅1‘𝑥) ↔ ∅ ∈ (𝑅1‘suc ∅))) |
| 11 | 10 | rspcev 3585 | . . 3 ⊢ ((suc ∅ ∈ ω ∧ ∅ ∈ (𝑅1‘suc ∅)) → ∃𝑥 ∈ ω ∅ ∈ (𝑅1‘𝑥)) |
| 12 | 3, 8, 11 | mp2an 692 | . 2 ⊢ ∃𝑥 ∈ ω ∅ ∈ (𝑅1‘𝑥) |
| 13 | elhf 36155 | . 2 ⊢ (∅ ∈ Hf ↔ ∃𝑥 ∈ ω ∅ ∈ (𝑅1‘𝑥)) | |
| 14 | 12, 13 | mpbir 231 | 1 ⊢ ∅ ∈ Hf |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∅c0 4292 𝒫 cpw 4559 Oncon0 6320 suc csuc 6322 ‘cfv 6499 ωcom 7822 𝑅1cr1 9691 Hf chf 36153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-r1 9693 df-hf 36154 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |