| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0hf | Structured version Visualization version GIF version | ||
| Description: The empty set is a hereditarily finite set. (Contributed by Scott Fenton, 9-Jul-2015.) |
| Ref | Expression |
|---|---|
| 0hf | ⊢ ∅ ∈ Hf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7828 | . . . 4 ⊢ ∅ ∈ ω | |
| 2 | peano2 7829 | . . . 4 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ suc ∅ ∈ ω |
| 4 | 0elpw 5298 | . . . 4 ⊢ ∅ ∈ 𝒫 (𝑅1‘∅) | |
| 5 | 0elon 6369 | . . . . 5 ⊢ ∅ ∈ On | |
| 6 | r1suc 9673 | . . . . 5 ⊢ (∅ ∈ On → (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅)) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅) |
| 8 | 4, 7 | eleqtrri 2832 | . . 3 ⊢ ∅ ∈ (𝑅1‘suc ∅) |
| 9 | fveq2 6831 | . . . . 5 ⊢ (𝑥 = suc ∅ → (𝑅1‘𝑥) = (𝑅1‘suc ∅)) | |
| 10 | 9 | eleq2d 2819 | . . . 4 ⊢ (𝑥 = suc ∅ → (∅ ∈ (𝑅1‘𝑥) ↔ ∅ ∈ (𝑅1‘suc ∅))) |
| 11 | 10 | rspcev 3574 | . . 3 ⊢ ((suc ∅ ∈ ω ∧ ∅ ∈ (𝑅1‘suc ∅)) → ∃𝑥 ∈ ω ∅ ∈ (𝑅1‘𝑥)) |
| 12 | 3, 8, 11 | mp2an 692 | . 2 ⊢ ∃𝑥 ∈ ω ∅ ∈ (𝑅1‘𝑥) |
| 13 | elhf 36229 | . 2 ⊢ (∅ ∈ Hf ↔ ∃𝑥 ∈ ω ∅ ∈ (𝑅1‘𝑥)) | |
| 14 | 12, 13 | mpbir 231 | 1 ⊢ ∅ ∈ Hf |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∃wrex 3058 ∅c0 4284 𝒫 cpw 4551 Oncon0 6314 suc csuc 6316 ‘cfv 6489 ωcom 7805 𝑅1cr1 9665 Hf chf 36227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-r1 9667 df-hf 36228 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |