| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0hf | Structured version Visualization version GIF version | ||
| Description: The empty set is a hereditarily finite set. (Contributed by Scott Fenton, 9-Jul-2015.) |
| Ref | Expression |
|---|---|
| 0hf | ⊢ ∅ ∈ Hf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7911 | . . . 4 ⊢ ∅ ∈ ω | |
| 2 | peano2 7913 | . . . 4 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ suc ∅ ∈ ω |
| 4 | 0elpw 5355 | . . . 4 ⊢ ∅ ∈ 𝒫 (𝑅1‘∅) | |
| 5 | 0elon 6437 | . . . . 5 ⊢ ∅ ∈ On | |
| 6 | r1suc 9811 | . . . . 5 ⊢ (∅ ∈ On → (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅)) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅) |
| 8 | 4, 7 | eleqtrri 2839 | . . 3 ⊢ ∅ ∈ (𝑅1‘suc ∅) |
| 9 | fveq2 6905 | . . . . 5 ⊢ (𝑥 = suc ∅ → (𝑅1‘𝑥) = (𝑅1‘suc ∅)) | |
| 10 | 9 | eleq2d 2826 | . . . 4 ⊢ (𝑥 = suc ∅ → (∅ ∈ (𝑅1‘𝑥) ↔ ∅ ∈ (𝑅1‘suc ∅))) |
| 11 | 10 | rspcev 3621 | . . 3 ⊢ ((suc ∅ ∈ ω ∧ ∅ ∈ (𝑅1‘suc ∅)) → ∃𝑥 ∈ ω ∅ ∈ (𝑅1‘𝑥)) |
| 12 | 3, 8, 11 | mp2an 692 | . 2 ⊢ ∃𝑥 ∈ ω ∅ ∈ (𝑅1‘𝑥) |
| 13 | elhf 36176 | . 2 ⊢ (∅ ∈ Hf ↔ ∃𝑥 ∈ ω ∅ ∈ (𝑅1‘𝑥)) | |
| 14 | 12, 13 | mpbir 231 | 1 ⊢ ∅ ∈ Hf |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ∅c0 4332 𝒫 cpw 4599 Oncon0 6383 suc csuc 6385 ‘cfv 6560 ωcom 7888 𝑅1cr1 9803 Hf chf 36174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-r1 9805 df-hf 36175 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |