![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0hf | Structured version Visualization version GIF version |
Description: The empty set is a hereditarily finite set. (Contributed by Scott Fenton, 9-Jul-2015.) |
Ref | Expression |
---|---|
0hf | ⊢ ∅ ∈ Hf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7410 | . . . 4 ⊢ ∅ ∈ ω | |
2 | peano2 7411 | . . . 4 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ suc ∅ ∈ ω |
4 | 0elpw 5104 | . . . 4 ⊢ ∅ ∈ 𝒫 (𝑅1‘∅) | |
5 | 0elon 6076 | . . . . 5 ⊢ ∅ ∈ On | |
6 | r1suc 8985 | . . . . 5 ⊢ (∅ ∈ On → (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅) |
8 | 4, 7 | eleqtrri 2859 | . . 3 ⊢ ∅ ∈ (𝑅1‘suc ∅) |
9 | fveq2 6493 | . . . . 5 ⊢ (𝑥 = suc ∅ → (𝑅1‘𝑥) = (𝑅1‘suc ∅)) | |
10 | 9 | eleq2d 2845 | . . . 4 ⊢ (𝑥 = suc ∅ → (∅ ∈ (𝑅1‘𝑥) ↔ ∅ ∈ (𝑅1‘suc ∅))) |
11 | 10 | rspcev 3529 | . . 3 ⊢ ((suc ∅ ∈ ω ∧ ∅ ∈ (𝑅1‘suc ∅)) → ∃𝑥 ∈ ω ∅ ∈ (𝑅1‘𝑥)) |
12 | 3, 8, 11 | mp2an 679 | . 2 ⊢ ∃𝑥 ∈ ω ∅ ∈ (𝑅1‘𝑥) |
13 | elhf 33096 | . 2 ⊢ (∅ ∈ Hf ↔ ∃𝑥 ∈ ω ∅ ∈ (𝑅1‘𝑥)) | |
14 | 12, 13 | mpbir 223 | 1 ⊢ ∅ ∈ Hf |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2048 ∃wrex 3083 ∅c0 4173 𝒫 cpw 4416 Oncon0 6023 suc csuc 6025 ‘cfv 6182 ωcom 7390 𝑅1cr1 8977 Hf chf 33094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-om 7391 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-r1 8979 df-hf 33095 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |