Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0hf Structured version   Visualization version   GIF version

Theorem 0hf 36158
Description: The empty set is a hereditarily finite set. (Contributed by Scott Fenton, 9-Jul-2015.)
Assertion
Ref Expression
0hf ∅ ∈ Hf

Proof of Theorem 0hf
StepHypRef Expression
1 peano1 7845 . . . 4 ∅ ∈ ω
2 peano2 7846 . . . 4 (∅ ∈ ω → suc ∅ ∈ ω)
31, 2ax-mp 5 . . 3 suc ∅ ∈ ω
4 0elpw 5306 . . . 4 ∅ ∈ 𝒫 (𝑅1‘∅)
5 0elon 6375 . . . . 5 ∅ ∈ On
6 r1suc 9699 . . . . 5 (∅ ∈ On → (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅))
75, 6ax-mp 5 . . . 4 (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅)
84, 7eleqtrri 2827 . . 3 ∅ ∈ (𝑅1‘suc ∅)
9 fveq2 6840 . . . . 5 (𝑥 = suc ∅ → (𝑅1𝑥) = (𝑅1‘suc ∅))
109eleq2d 2814 . . . 4 (𝑥 = suc ∅ → (∅ ∈ (𝑅1𝑥) ↔ ∅ ∈ (𝑅1‘suc ∅)))
1110rspcev 3585 . . 3 ((suc ∅ ∈ ω ∧ ∅ ∈ (𝑅1‘suc ∅)) → ∃𝑥 ∈ ω ∅ ∈ (𝑅1𝑥))
123, 8, 11mp2an 692 . 2 𝑥 ∈ ω ∅ ∈ (𝑅1𝑥)
13 elhf 36155 . 2 (∅ ∈ Hf ↔ ∃𝑥 ∈ ω ∅ ∈ (𝑅1𝑥))
1412, 13mpbir 231 1 ∅ ∈ Hf
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wrex 3053  c0 4292  𝒫 cpw 4559  Oncon0 6320  suc csuc 6322  cfv 6499  ωcom 7822  𝑅1cr1 9691   Hf chf 36153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-r1 9693  df-hf 36154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator