Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetrecs Structured version   Visualization version   GIF version

Theorem elsetrecs 49800
Description: A set 𝐴 is an element of setrecs(𝐹) iff 𝐴 is generated by some subset of setrecs(𝐹). The proof requires both setrec1 49791 and setrec2 49795, but this theorem is not strong enough to uniquely determine setrecs(𝐹). If 𝐹 respects the subset relation, the theorem still holds if both occurrences of are replaced by for a stronger version of the theorem. (Contributed by Emmett Weisz, 12-Jul-2021.)
Hypothesis
Ref Expression
elsetrecs.1 𝐵 = setrecs(𝐹)
Assertion
Ref Expression
elsetrecs (𝐴𝐵 ↔ ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem elsetrecs
StepHypRef Expression
1 elsetrecs.1 . . 3 𝐵 = setrecs(𝐹)
21elsetrecslem 49799 . 2 (𝐴𝐵 → ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
3 vex 3440 . . . . . 6 𝑥 ∈ V
43a1i 11 . . . . 5 (𝑥𝐵𝑥 ∈ V)
5 id 22 . . . . 5 (𝑥𝐵𝑥𝐵)
61, 4, 5setrec1 49791 . . . 4 (𝑥𝐵 → (𝐹𝑥) ⊆ 𝐵)
76sselda 3929 . . 3 ((𝑥𝐵𝐴 ∈ (𝐹𝑥)) → 𝐴𝐵)
87exlimiv 1931 . 2 (∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)) → 𝐴𝐵)
92, 8impbii 209 1 (𝐴𝐵 ↔ ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  wss 3897  cfv 6481  setrecscsetrecs 49783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657  df-rank 9658  df-setrecs 49784
This theorem is referenced by:  elpg  49814
  Copyright terms: Public domain W3C validator