| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetrecs | Structured version Visualization version GIF version | ||
| Description: A set 𝐴 is an element of setrecs(𝐹) iff 𝐴 is generated by some subset of setrecs(𝐹). The proof requires both setrec1 49791 and setrec2 49795, but this theorem is not strong enough to uniquely determine setrecs(𝐹). If 𝐹 respects the subset relation, the theorem still holds if both occurrences of ∈ are replaced by ⊆ for a stronger version of the theorem. (Contributed by Emmett Weisz, 12-Jul-2021.) |
| Ref | Expression |
|---|---|
| elsetrecs.1 | ⊢ 𝐵 = setrecs(𝐹) |
| Ref | Expression |
|---|---|
| elsetrecs | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsetrecs.1 | . . 3 ⊢ 𝐵 = setrecs(𝐹) | |
| 2 | 1 | elsetrecslem 49799 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
| 3 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝑥 ⊆ 𝐵 → 𝑥 ∈ V) |
| 5 | id 22 | . . . . 5 ⊢ (𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐵) | |
| 6 | 1, 4, 5 | setrec1 49791 | . . . 4 ⊢ (𝑥 ⊆ 𝐵 → (𝐹‘𝑥) ⊆ 𝐵) |
| 7 | 6 | sselda 3929 | . . 3 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → 𝐴 ∈ 𝐵) |
| 8 | 7 | exlimiv 1931 | . 2 ⊢ (∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → 𝐴 ∈ 𝐵) |
| 9 | 2, 8 | impbii 209 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ‘cfv 6481 setrecscsetrecs 49783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 df-setrecs 49784 |
| This theorem is referenced by: elpg 49814 |
| Copyright terms: Public domain | W3C validator |