Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetrecs Structured version   Visualization version   GIF version

Theorem elsetrecs 49274
Description: A set 𝐴 is an element of setrecs(𝐹) iff 𝐴 is generated by some subset of setrecs(𝐹). The proof requires both setrec1 49265 and setrec2 49269, but this theorem is not strong enough to uniquely determine setrecs(𝐹). If 𝐹 respects the subset relation, the theorem still holds if both occurrences of are replaced by for a stronger version of the theorem. (Contributed by Emmett Weisz, 12-Jul-2021.)
Hypothesis
Ref Expression
elsetrecs.1 𝐵 = setrecs(𝐹)
Assertion
Ref Expression
elsetrecs (𝐴𝐵 ↔ ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem elsetrecs
StepHypRef Expression
1 elsetrecs.1 . . 3 𝐵 = setrecs(𝐹)
21elsetrecslem 49273 . 2 (𝐴𝐵 → ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
3 vex 3483 . . . . . 6 𝑥 ∈ V
43a1i 11 . . . . 5 (𝑥𝐵𝑥 ∈ V)
5 id 22 . . . . 5 (𝑥𝐵𝑥𝐵)
61, 4, 5setrec1 49265 . . . 4 (𝑥𝐵 → (𝐹𝑥) ⊆ 𝐵)
76sselda 3982 . . 3 ((𝑥𝐵𝐴 ∈ (𝐹𝑥)) → 𝐴𝐵)
87exlimiv 1929 . 2 (∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)) → 𝐴𝐵)
92, 8impbii 209 1 (𝐴𝐵 ↔ ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  Vcvv 3479  wss 3950  cfv 6560  setrecscsetrecs 49257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-reg 9633  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-r1 9805  df-rank 9806  df-setrecs 49258
This theorem is referenced by:  elpg  49288
  Copyright terms: Public domain W3C validator