MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimcls Structured version   Visualization version   GIF version

Theorem flimcls 23136
Description: Closure in terms of filter convergence. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flimcls ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓))))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽   𝑆,𝑓   𝑓,𝑋

Proof of Theorem flimcls
StepHypRef Expression
1 eqid 2738 . . . . . 6 (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
21flimclslem 23135 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ 𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))))
3 3anass 1094 . . . . 5 (((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ 𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))) ↔ ((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ (𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))))
42, 3sylib 217 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ (𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))))
5 eleq2 2827 . . . . . 6 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) → (𝑆𝑓𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))
6 oveq2 7283 . . . . . . 7 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) → (𝐽 fLim 𝑓) = (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))
76eleq2d 2824 . . . . . 6 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) → (𝐴 ∈ (𝐽 fLim 𝑓) ↔ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))))
85, 7anbi12d 631 . . . . 5 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) → ((𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓)) ↔ (𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))))
98rspcev 3561 . . . 4 (((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ (𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))) → ∃𝑓 ∈ (Fil‘𝑋)(𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓)))
104, 9syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑓 ∈ (Fil‘𝑋)(𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓)))
11103expia 1120 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) → ∃𝑓 ∈ (Fil‘𝑋)(𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓))))
12 flimclsi 23129 . . . 4 (𝑆𝑓 → (𝐽 fLim 𝑓) ⊆ ((cls‘𝐽)‘𝑆))
1312sselda 3921 . . 3 ((𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
1413rexlimivw 3211 . 2 (∃𝑓 ∈ (Fil‘𝑋)(𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
1511, 14impbid1 224 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  cun 3885  wss 3887  {csn 4561  cfv 6433  (class class class)co 7275  ficfi 9169  filGencfg 20586  TopOnctopon 22059  clsccl 22169  neicnei 22248  Filcfil 22996   fLim cflim 23085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-fin 8737  df-fi 9170  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-fil 22997  df-flim 23090
This theorem is referenced by:  metsscmetcld  24479
  Copyright terms: Public domain W3C validator