Proof of Theorem flimcls
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . 6
⊢ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) |
2 | 1 | flimclslem 23135 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ 𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))) |
3 | | 3anass 1094 |
. . . . 5
⊢ (((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ 𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))) ↔ ((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ (𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))))) |
4 | 2, 3 | sylib 217 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ (𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))))) |
5 | | eleq2 2827 |
. . . . . 6
⊢ (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) → (𝑆 ∈ 𝑓 ↔ 𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))) |
6 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) → (𝐽 fLim 𝑓) = (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))) |
7 | 6 | eleq2d 2824 |
. . . . . 6
⊢ (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) → (𝐴 ∈ (𝐽 fLim 𝑓) ↔ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))) |
8 | 5, 7 | anbi12d 631 |
. . . . 5
⊢ (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) → ((𝑆 ∈ 𝑓 ∧ 𝐴 ∈ (𝐽 fLim 𝑓)) ↔ (𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))))) |
9 | 8 | rspcev 3561 |
. . . 4
⊢ (((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ (𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))) → ∃𝑓 ∈ (Fil‘𝑋)(𝑆 ∈ 𝑓 ∧ 𝐴 ∈ (𝐽 fLim 𝑓))) |
10 | 4, 9 | syl 17 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑓 ∈ (Fil‘𝑋)(𝑆 ∈ 𝑓 ∧ 𝐴 ∈ (𝐽 fLim 𝑓))) |
11 | 10 | 3expia 1120 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) → ∃𝑓 ∈ (Fil‘𝑋)(𝑆 ∈ 𝑓 ∧ 𝐴 ∈ (𝐽 fLim 𝑓)))) |
12 | | flimclsi 23129 |
. . . 4
⊢ (𝑆 ∈ 𝑓 → (𝐽 fLim 𝑓) ⊆ ((cls‘𝐽)‘𝑆)) |
13 | 12 | sselda 3921 |
. . 3
⊢ ((𝑆 ∈ 𝑓 ∧ 𝐴 ∈ (𝐽 fLim 𝑓)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆)) |
14 | 13 | rexlimivw 3211 |
. 2
⊢
(∃𝑓 ∈
(Fil‘𝑋)(𝑆 ∈ 𝑓 ∧ 𝐴 ∈ (𝐽 fLim 𝑓)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆)) |
15 | 11, 14 | impbid1 224 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑆 ∈ 𝑓 ∧ 𝐴 ∈ (𝐽 fLim 𝑓)))) |