Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem15 Structured version   Visualization version   GIF version

Theorem fourierdlem15 44838
Description: The range of the partition is between its starting point and its ending point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem15.1 𝑃 = (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...π‘š)) ∣ (((π‘β€˜0) = 𝐴 ∧ (π‘β€˜π‘š) = 𝐡) ∧ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))})
fourierdlem15.2 (πœ‘ β†’ 𝑀 ∈ β„•)
fourierdlem15.3 (πœ‘ β†’ 𝑄 ∈ (π‘ƒβ€˜π‘€))
Assertion
Ref Expression
fourierdlem15 (πœ‘ β†’ 𝑄:(0...𝑀)⟢(𝐴[,]𝐡))
Distinct variable groups:   𝐴,𝑖,π‘š,𝑝   𝐡,𝑖,π‘š,𝑝   𝑖,𝑀,π‘š,𝑝   𝑄,𝑖,𝑝   πœ‘,𝑖
Allowed substitution hints:   πœ‘(π‘š,𝑝)   𝑃(𝑖,π‘š,𝑝)   𝑄(π‘š)

Proof of Theorem fourierdlem15
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem15.3 . . . . . 6 (πœ‘ β†’ 𝑄 ∈ (π‘ƒβ€˜π‘€))
2 fourierdlem15.2 . . . . . . 7 (πœ‘ β†’ 𝑀 ∈ β„•)
3 fourierdlem15.1 . . . . . . . 8 𝑃 = (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...π‘š)) ∣ (((π‘β€˜0) = 𝐴 ∧ (π‘β€˜π‘š) = 𝐡) ∧ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))})
43fourierdlem2 44825 . . . . . . 7 (𝑀 ∈ β„• β†’ (𝑄 ∈ (π‘ƒβ€˜π‘€) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((π‘„β€˜0) = 𝐴 ∧ (π‘„β€˜π‘€) = 𝐡) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1))))))
52, 4syl 17 . . . . . 6 (πœ‘ β†’ (𝑄 ∈ (π‘ƒβ€˜π‘€) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((π‘„β€˜0) = 𝐴 ∧ (π‘„β€˜π‘€) = 𝐡) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1))))))
61, 5mpbid 231 . . . . 5 (πœ‘ β†’ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((π‘„β€˜0) = 𝐴 ∧ (π‘„β€˜π‘€) = 𝐡) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1)))))
76simpld 496 . . . 4 (πœ‘ β†’ 𝑄 ∈ (ℝ ↑m (0...𝑀)))
8 reex 11201 . . . . . 6 ℝ ∈ V
98a1i 11 . . . . 5 (πœ‘ β†’ ℝ ∈ V)
10 ovex 7442 . . . . . 6 (0...𝑀) ∈ V
1110a1i 11 . . . . 5 (πœ‘ β†’ (0...𝑀) ∈ V)
129, 11elmapd 8834 . . . 4 (πœ‘ β†’ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)βŸΆβ„))
137, 12mpbid 231 . . 3 (πœ‘ β†’ 𝑄:(0...𝑀)βŸΆβ„)
14 ffn 6718 . . 3 (𝑄:(0...𝑀)βŸΆβ„ β†’ 𝑄 Fn (0...𝑀))
1513, 14syl 17 . 2 (πœ‘ β†’ 𝑄 Fn (0...𝑀))
166simprd 497 . . . . . . . . 9 (πœ‘ β†’ (((π‘„β€˜0) = 𝐴 ∧ (π‘„β€˜π‘€) = 𝐡) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1))))
1716simpld 496 . . . . . . . 8 (πœ‘ β†’ ((π‘„β€˜0) = 𝐴 ∧ (π‘„β€˜π‘€) = 𝐡))
1817simpld 496 . . . . . . 7 (πœ‘ β†’ (π‘„β€˜0) = 𝐴)
19 nnnn0 12479 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ 𝑀 ∈ β„•0)
20 nn0uz 12864 . . . . . . . . . . 11 β„•0 = (β„€β‰₯β€˜0)
2119, 20eleqtrdi 2844 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ 𝑀 ∈ (β„€β‰₯β€˜0))
222, 21syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑀 ∈ (β„€β‰₯β€˜0))
23 eluzfz1 13508 . . . . . . . . 9 (𝑀 ∈ (β„€β‰₯β€˜0) β†’ 0 ∈ (0...𝑀))
2422, 23syl 17 . . . . . . . 8 (πœ‘ β†’ 0 ∈ (0...𝑀))
2513, 24ffvelcdmd 7088 . . . . . . 7 (πœ‘ β†’ (π‘„β€˜0) ∈ ℝ)
2618, 25eqeltrrd 2835 . . . . . 6 (πœ‘ β†’ 𝐴 ∈ ℝ)
2726adantr 482 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ 𝐴 ∈ ℝ)
2817simprd 497 . . . . . . 7 (πœ‘ β†’ (π‘„β€˜π‘€) = 𝐡)
29 eluzfz2 13509 . . . . . . . . 9 (𝑀 ∈ (β„€β‰₯β€˜0) β†’ 𝑀 ∈ (0...𝑀))
3022, 29syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑀 ∈ (0...𝑀))
3113, 30ffvelcdmd 7088 . . . . . . 7 (πœ‘ β†’ (π‘„β€˜π‘€) ∈ ℝ)
3228, 31eqeltrrd 2835 . . . . . 6 (πœ‘ β†’ 𝐡 ∈ ℝ)
3332adantr 482 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ 𝐡 ∈ ℝ)
3413ffvelcdmda 7087 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (π‘„β€˜π‘–) ∈ ℝ)
3518eqcomd 2739 . . . . . . 7 (πœ‘ β†’ 𝐴 = (π‘„β€˜0))
3635adantr 482 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ 𝐴 = (π‘„β€˜0))
37 elfzuz 13497 . . . . . . . 8 (𝑖 ∈ (0...𝑀) β†’ 𝑖 ∈ (β„€β‰₯β€˜0))
3837adantl 483 . . . . . . 7 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ 𝑖 ∈ (β„€β‰₯β€˜0))
3913ad2antrr 725 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) β†’ 𝑄:(0...𝑀)βŸΆβ„)
40 0zd 12570 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) β†’ 0 ∈ β„€)
41 elfzel2 13499 . . . . . . . . . . 11 (𝑖 ∈ (0...𝑀) β†’ 𝑀 ∈ β„€)
4241adantr 482 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) β†’ 𝑀 ∈ β„€)
43 elfzelz 13501 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑖) β†’ 𝑗 ∈ β„€)
4443adantl 483 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) β†’ 𝑗 ∈ β„€)
45 elfzle1 13504 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑖) β†’ 0 ≀ 𝑗)
4645adantl 483 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) β†’ 0 ≀ 𝑗)
4743zred 12666 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑖) β†’ 𝑗 ∈ ℝ)
4847adantl 483 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) β†’ 𝑗 ∈ ℝ)
49 elfzelz 13501 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) β†’ 𝑖 ∈ β„€)
5049zred 12666 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) β†’ 𝑖 ∈ ℝ)
5150adantr 482 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) β†’ 𝑖 ∈ ℝ)
5241zred 12666 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) β†’ 𝑀 ∈ ℝ)
5352adantr 482 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) β†’ 𝑀 ∈ ℝ)
54 elfzle2 13505 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑖) β†’ 𝑗 ≀ 𝑖)
5554adantl 483 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) β†’ 𝑗 ≀ 𝑖)
56 elfzle2 13505 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) β†’ 𝑖 ≀ 𝑀)
5756adantr 482 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) β†’ 𝑖 ≀ 𝑀)
5848, 51, 53, 55, 57letrd 11371 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) β†’ 𝑗 ≀ 𝑀)
5940, 42, 44, 46, 58elfzd 13492 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) β†’ 𝑗 ∈ (0...𝑀))
6059adantll 713 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) β†’ 𝑗 ∈ (0...𝑀))
6139, 60ffvelcdmd 7088 . . . . . . 7 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) β†’ (π‘„β€˜π‘—) ∈ ℝ)
62 simpll 766 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ πœ‘)
63 elfzle1 13504 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑖 βˆ’ 1)) β†’ 0 ≀ 𝑗)
6463adantl 483 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 0 ≀ 𝑗)
65 elfzelz 13501 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑖 βˆ’ 1)) β†’ 𝑗 ∈ β„€)
6665zred 12666 . . . . . . . . . . . 12 (𝑗 ∈ (0...(𝑖 βˆ’ 1)) β†’ 𝑗 ∈ ℝ)
6766adantl 483 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 𝑗 ∈ ℝ)
6850adantr 482 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 𝑖 ∈ ℝ)
6952adantr 482 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 𝑀 ∈ ℝ)
70 peano2rem 11527 . . . . . . . . . . . . 13 (𝑖 ∈ ℝ β†’ (𝑖 βˆ’ 1) ∈ ℝ)
7168, 70syl 17 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ (𝑖 βˆ’ 1) ∈ ℝ)
72 elfzle2 13505 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑖 βˆ’ 1)) β†’ 𝑗 ≀ (𝑖 βˆ’ 1))
7372adantl 483 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 𝑗 ≀ (𝑖 βˆ’ 1))
7468ltm1d 12146 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ (𝑖 βˆ’ 1) < 𝑖)
7567, 71, 68, 73, 74lelttrd 11372 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 𝑗 < 𝑖)
7656adantr 482 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 𝑖 ≀ 𝑀)
7767, 68, 69, 75, 76ltletrd 11374 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 𝑗 < 𝑀)
7865adantl 483 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 𝑗 ∈ β„€)
79 0zd 12570 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 0 ∈ β„€)
8041adantr 482 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 𝑀 ∈ β„€)
81 elfzo 13634 . . . . . . . . . . 11 ((𝑗 ∈ β„€ ∧ 0 ∈ β„€ ∧ 𝑀 ∈ β„€) β†’ (𝑗 ∈ (0..^𝑀) ↔ (0 ≀ 𝑗 ∧ 𝑗 < 𝑀)))
8278, 79, 80, 81syl3anc 1372 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ (𝑗 ∈ (0..^𝑀) ↔ (0 ≀ 𝑗 ∧ 𝑗 < 𝑀)))
8364, 77, 82mpbir2and 712 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 𝑗 ∈ (0..^𝑀))
8483adantll 713 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ 𝑗 ∈ (0..^𝑀))
8513adantr 482 . . . . . . . . . 10 ((πœ‘ ∧ 𝑗 ∈ (0..^𝑀)) β†’ 𝑄:(0...𝑀)βŸΆβ„)
86 elfzofz 13648 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) β†’ 𝑗 ∈ (0...𝑀))
8786adantl 483 . . . . . . . . . 10 ((πœ‘ ∧ 𝑗 ∈ (0..^𝑀)) β†’ 𝑗 ∈ (0...𝑀))
8885, 87ffvelcdmd 7088 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ (0..^𝑀)) β†’ (π‘„β€˜π‘—) ∈ ℝ)
89 fzofzp1 13729 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) β†’ (𝑗 + 1) ∈ (0...𝑀))
9089adantl 483 . . . . . . . . . 10 ((πœ‘ ∧ 𝑗 ∈ (0..^𝑀)) β†’ (𝑗 + 1) ∈ (0...𝑀))
9185, 90ffvelcdmd 7088 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ (0..^𝑀)) β†’ (π‘„β€˜(𝑗 + 1)) ∈ ℝ)
92 eleq1w 2817 . . . . . . . . . . . 12 (𝑖 = 𝑗 β†’ (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀)))
9392anbi2d 630 . . . . . . . . . . 11 (𝑖 = 𝑗 β†’ ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) ↔ (πœ‘ ∧ 𝑗 ∈ (0..^𝑀))))
94 fveq2 6892 . . . . . . . . . . . 12 (𝑖 = 𝑗 β†’ (π‘„β€˜π‘–) = (π‘„β€˜π‘—))
95 oveq1 7416 . . . . . . . . . . . . 13 (𝑖 = 𝑗 β†’ (𝑖 + 1) = (𝑗 + 1))
9695fveq2d 6896 . . . . . . . . . . . 12 (𝑖 = 𝑗 β†’ (π‘„β€˜(𝑖 + 1)) = (π‘„β€˜(𝑗 + 1)))
9794, 96breq12d 5162 . . . . . . . . . . 11 (𝑖 = 𝑗 β†’ ((π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1)) ↔ (π‘„β€˜π‘—) < (π‘„β€˜(𝑗 + 1))))
9893, 97imbi12d 345 . . . . . . . . . 10 (𝑖 = 𝑗 β†’ (((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1))) ↔ ((πœ‘ ∧ 𝑗 ∈ (0..^𝑀)) β†’ (π‘„β€˜π‘—) < (π‘„β€˜(𝑗 + 1)))))
9916simprd 497 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1)))
10099r19.21bi 3249 . . . . . . . . . 10 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1)))
10198, 100chvarvv 2003 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ (0..^𝑀)) β†’ (π‘„β€˜π‘—) < (π‘„β€˜(𝑗 + 1)))
10288, 91, 101ltled 11362 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ (0..^𝑀)) β†’ (π‘„β€˜π‘—) ≀ (π‘„β€˜(𝑗 + 1)))
10362, 84, 102syl2anc 585 . . . . . . 7 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 βˆ’ 1))) β†’ (π‘„β€˜π‘—) ≀ (π‘„β€˜(𝑗 + 1)))
10438, 61, 103monoord 13998 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (π‘„β€˜0) ≀ (π‘„β€˜π‘–))
10536, 104eqbrtrd 5171 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ 𝐴 ≀ (π‘„β€˜π‘–))
106 elfzuz3 13498 . . . . . . . 8 (𝑖 ∈ (0...𝑀) β†’ 𝑀 ∈ (β„€β‰₯β€˜π‘–))
107106adantl 483 . . . . . . 7 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ 𝑀 ∈ (β„€β‰₯β€˜π‘–))
10813ad2antrr 725 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) β†’ 𝑄:(0...𝑀)βŸΆβ„)
109 fz0fzelfz0 13607 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...𝑀)) β†’ 𝑗 ∈ (0...𝑀))
110109adantll 713 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) β†’ 𝑗 ∈ (0...𝑀))
111108, 110ffvelcdmd 7088 . . . . . . 7 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) β†’ (π‘„β€˜π‘—) ∈ ℝ)
11213ad2antrr 725 . . . . . . . . 9 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑄:(0...𝑀)βŸΆβ„)
113 0zd 12570 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 0 ∈ β„€)
11441ad2antlr 726 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑀 ∈ β„€)
115 elfzelz 13501 . . . . . . . . . . 11 (𝑗 ∈ (𝑖...(𝑀 βˆ’ 1)) β†’ 𝑗 ∈ β„€)
116115adantl 483 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑗 ∈ β„€)
117 0red 11217 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 0 ∈ ℝ)
11850adantr 482 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑖 ∈ ℝ)
119115zred 12666 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑖...(𝑀 βˆ’ 1)) β†’ 𝑗 ∈ ℝ)
120119adantl 483 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑗 ∈ ℝ)
121 elfzle1 13504 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) β†’ 0 ≀ 𝑖)
122121adantr 482 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 0 ≀ 𝑖)
123 elfzle1 13504 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑖...(𝑀 βˆ’ 1)) β†’ 𝑖 ≀ 𝑗)
124123adantl 483 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑖 ≀ 𝑗)
125117, 118, 120, 122, 124letrd 11371 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 0 ≀ 𝑗)
126125adantll 713 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 0 ≀ 𝑗)
127119adantl 483 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑗 ∈ ℝ)
1282nnred 12227 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑀 ∈ ℝ)
129128adantr 482 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑀 ∈ ℝ)
130 1red 11215 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 1 ∈ ℝ)
131129, 130resubcld 11642 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ (𝑀 βˆ’ 1) ∈ ℝ)
132 elfzle2 13505 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑖...(𝑀 βˆ’ 1)) β†’ 𝑗 ≀ (𝑀 βˆ’ 1))
133132adantl 483 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑗 ≀ (𝑀 βˆ’ 1))
134129ltm1d 12146 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ (𝑀 βˆ’ 1) < 𝑀)
135127, 131, 129, 133, 134lelttrd 11372 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑗 < 𝑀)
136127, 129, 135ltled 11362 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑗 ≀ 𝑀)
137136adantlr 714 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑗 ≀ 𝑀)
138113, 114, 116, 126, 137elfzd 13492 . . . . . . . . 9 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑗 ∈ (0...𝑀))
139112, 138ffvelcdmd 7088 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ (π‘„β€˜π‘—) ∈ ℝ)
140116peano2zd 12669 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ (𝑗 + 1) ∈ β„€)
141119adantl 483 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑗 ∈ ℝ)
142 1red 11215 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 1 ∈ ℝ)
143 0le1 11737 . . . . . . . . . . . 12 0 ≀ 1
144143a1i 11 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 0 ≀ 1)
145141, 142, 126, 144addge0d 11790 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 0 ≀ (𝑗 + 1))
146127, 131, 130, 133leadd1dd 11828 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ (𝑗 + 1) ≀ ((𝑀 βˆ’ 1) + 1))
1472nncnd 12228 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑀 ∈ β„‚)
148147adantr 482 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑀 ∈ β„‚)
149 1cnd 11209 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 1 ∈ β„‚)
150148, 149npcand 11575 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ ((𝑀 βˆ’ 1) + 1) = 𝑀)
151146, 150breqtrd 5175 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ (𝑗 + 1) ≀ 𝑀)
152151adantlr 714 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ (𝑗 + 1) ≀ 𝑀)
153113, 114, 140, 145, 152elfzd 13492 . . . . . . . . 9 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ (𝑗 + 1) ∈ (0...𝑀))
154112, 153ffvelcdmd 7088 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ (π‘„β€˜(𝑗 + 1)) ∈ ℝ)
155 simpll 766 . . . . . . . . 9 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ πœ‘)
156135adantlr 714 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑗 < 𝑀)
157116, 113, 114, 81syl3anc 1372 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ (𝑗 ∈ (0..^𝑀) ↔ (0 ≀ 𝑗 ∧ 𝑗 < 𝑀)))
158126, 156, 157mpbir2and 712 . . . . . . . . 9 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ 𝑗 ∈ (0..^𝑀))
159155, 158, 101syl2anc 585 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ (π‘„β€˜π‘—) < (π‘„β€˜(𝑗 + 1)))
160139, 154, 159ltled 11362 . . . . . . 7 (((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 βˆ’ 1))) β†’ (π‘„β€˜π‘—) ≀ (π‘„β€˜(𝑗 + 1)))
161107, 111, 160monoord 13998 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (π‘„β€˜π‘–) ≀ (π‘„β€˜π‘€))
16228adantr 482 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (π‘„β€˜π‘€) = 𝐡)
163161, 162breqtrd 5175 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (π‘„β€˜π‘–) ≀ 𝐡)
16427, 33, 34, 105, 163eliccd 44217 . . . 4 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (π‘„β€˜π‘–) ∈ (𝐴[,]𝐡))
165164ralrimiva 3147 . . 3 (πœ‘ β†’ βˆ€π‘– ∈ (0...𝑀)(π‘„β€˜π‘–) ∈ (𝐴[,]𝐡))
166 fnfvrnss 7120 . . 3 ((𝑄 Fn (0...𝑀) ∧ βˆ€π‘– ∈ (0...𝑀)(π‘„β€˜π‘–) ∈ (𝐴[,]𝐡)) β†’ ran 𝑄 βŠ† (𝐴[,]𝐡))
16715, 165, 166syl2anc 585 . 2 (πœ‘ β†’ ran 𝑄 βŠ† (𝐴[,]𝐡))
168 df-f 6548 . 2 (𝑄:(0...𝑀)⟢(𝐴[,]𝐡) ↔ (𝑄 Fn (0...𝑀) ∧ ran 𝑄 βŠ† (𝐴[,]𝐡)))
16915, 167, 168sylanbrc 584 1 (πœ‘ β†’ 𝑄:(0...𝑀)⟢(𝐴[,]𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433  Vcvv 3475   βŠ† wss 3949   class class class wbr 5149   ↦ cmpt 5232  ran crn 5678   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820  β„‚cc 11108  β„cr 11109  0cc0 11110  1c1 11111   + caddc 11113   < clt 11248   ≀ cle 11249   βˆ’ cmin 11444  β„•cn 12212  β„•0cn0 12472  β„€cz 12558  β„€β‰₯cuz 12822  [,]cicc 13327  ...cfz 13484  ..^cfzo 13627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-icc 13331  df-fz 13485  df-fzo 13628
This theorem is referenced by:  fourierdlem38  44861  fourierdlem50  44872  fourierdlem54  44876  fourierdlem63  44885  fourierdlem65  44887  fourierdlem69  44891  fourierdlem70  44892  fourierdlem74  44896  fourierdlem75  44897  fourierdlem76  44898  fourierdlem79  44901  fourierdlem81  44903  fourierdlem84  44906  fourierdlem85  44907  fourierdlem88  44910  fourierdlem89  44911  fourierdlem90  44912  fourierdlem91  44913  fourierdlem92  44914  fourierdlem93  44915  fourierdlem100  44922  fourierdlem101  44923  fourierdlem103  44925  fourierdlem104  44926  fourierdlem107  44929  fourierdlem111  44933  fourierdlem112  44934  fourierdlem113  44935
  Copyright terms: Public domain W3C validator