Step | Hyp | Ref
| Expression |
1 | | fourierdlem15.3 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
2 | | fourierdlem15.2 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | fourierdlem15.1 |
. . . . . . . 8
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
4 | 3 | fourierdlem2 43325 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
5 | 2, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
6 | 1, 5 | mpbid 235 |
. . . . 5
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
7 | 6 | simpld 498 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
8 | | reex 10820 |
. . . . . 6
⊢ ℝ
∈ V |
9 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
V) |
10 | | ovex 7246 |
. . . . . 6
⊢
(0...𝑀) ∈
V |
11 | 10 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0...𝑀) ∈ V) |
12 | 9, 11 | elmapd 8522 |
. . . 4
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)) |
13 | 7, 12 | mpbid 235 |
. . 3
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
14 | | ffn 6545 |
. . 3
⊢ (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀)) |
15 | 13, 14 | syl 17 |
. 2
⊢ (𝜑 → 𝑄 Fn (0...𝑀)) |
16 | 6 | simprd 499 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
17 | 16 | simpld 498 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
18 | 17 | simpld 498 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
19 | | nnnn0 12097 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
20 | | nn0uz 12476 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
21 | 19, 20 | eleqtrdi 2848 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
(ℤ≥‘0)) |
22 | 2, 21 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
23 | | eluzfz1 13119 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
25 | 13, 24 | ffvelrnd 6905 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
26 | 18, 25 | eqeltrrd 2839 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
27 | 26 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℝ) |
28 | 17 | simprd 499 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
29 | | eluzfz2 13120 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
30 | 22, 29 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
31 | 13, 30 | ffvelrnd 6905 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℝ) |
32 | 28, 31 | eqeltrrd 2839 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
33 | 32 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝐵 ∈ ℝ) |
34 | 13 | ffvelrnda 6904 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
35 | 18 | eqcomd 2743 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = (𝑄‘0)) |
36 | 35 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 = (𝑄‘0)) |
37 | | elfzuz 13108 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈
(ℤ≥‘0)) |
38 | 37 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈
(ℤ≥‘0)) |
39 | 13 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑄:(0...𝑀)⟶ℝ) |
40 | | 0zd 12188 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ∈ ℤ) |
41 | | elfzel2 13110 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ) |
42 | 41 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℤ) |
43 | | elfzelz 13112 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℤ) |
44 | 43 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℤ) |
45 | | elfzle1 13115 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑖) → 0 ≤ 𝑗) |
46 | 45 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ≤ 𝑗) |
47 | 43 | zred 12282 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℝ) |
48 | 47 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℝ) |
49 | | elfzelz 13112 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ) |
50 | 49 | zred 12282 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ) |
51 | 50 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖 ∈ ℝ) |
52 | 41 | zred 12282 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ) |
53 | 52 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℝ) |
54 | | elfzle2 13116 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ≤ 𝑖) |
55 | 54 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ≤ 𝑖) |
56 | | elfzle2 13116 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ≤ 𝑀) |
57 | 56 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖 ≤ 𝑀) |
58 | 48, 51, 53, 55, 57 | letrd 10989 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ≤ 𝑀) |
59 | 40, 42, 44, 46, 58 | elfzd 13103 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀)) |
60 | 59 | adantll 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀)) |
61 | 39, 60 | ffvelrnd 6905 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → (𝑄‘𝑗) ∈ ℝ) |
62 | | simpll 767 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝜑) |
63 | | elfzle1 13115 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...(𝑖 − 1)) → 0 ≤ 𝑗) |
64 | 63 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ≤ 𝑗) |
65 | | elfzelz 13112 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℤ) |
66 | 65 | zred 12282 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℝ) |
67 | 66 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℝ) |
68 | 50 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖 ∈ ℝ) |
69 | 52 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℝ) |
70 | | peano2rem 11145 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℝ → (𝑖 − 1) ∈
ℝ) |
71 | 68, 70 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) ∈ ℝ) |
72 | | elfzle2 13116 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ≤ (𝑖 − 1)) |
73 | 72 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ≤ (𝑖 − 1)) |
74 | 68 | ltm1d 11764 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) < 𝑖) |
75 | 67, 71, 68, 73, 74 | lelttrd 10990 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑖) |
76 | 56 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖 ≤ 𝑀) |
77 | 67, 68, 69, 75, 76 | ltletrd 10992 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑀) |
78 | 65 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℤ) |
79 | | 0zd 12188 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ∈
ℤ) |
80 | 41 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℤ) |
81 | | elfzo 13245 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → (𝑗 ∈
(0..^𝑀) ↔ (0 ≤
𝑗 ∧ 𝑗 < 𝑀))) |
82 | 78, 79, 80, 81 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗 ∧ 𝑗 < 𝑀))) |
83 | 64, 77, 82 | mpbir2and 713 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀)) |
84 | 83 | adantll 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀)) |
85 | 13 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
86 | | elfzofz 13258 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀)) |
87 | 86 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀)) |
88 | 85, 87 | ffvelrnd 6905 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
89 | | fzofzp1 13339 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀)) |
90 | 89 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀)) |
91 | 85, 90 | ffvelrnd 6905 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ) |
92 | | eleq1w 2820 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀))) |
93 | 92 | anbi2d 632 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑗 ∈ (0..^𝑀)))) |
94 | | fveq2 6717 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
95 | | oveq1 7220 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1)) |
96 | 95 | fveq2d 6721 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1))) |
97 | 94, 96 | breq12d 5066 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘𝑗) < (𝑄‘(𝑗 + 1)))) |
98 | 93, 97 | imbi12d 348 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))))) |
99 | 16 | simprd 499 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
100 | 99 | r19.21bi 3130 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
101 | 98, 100 | chvarvv 2007 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))) |
102 | 88, 91, 101 | ltled 10980 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) ≤ (𝑄‘(𝑗 + 1))) |
103 | 62, 84, 102 | syl2anc 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑄‘𝑗) ≤ (𝑄‘(𝑗 + 1))) |
104 | 38, 61, 103 | monoord 13606 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄‘𝑖)) |
105 | 36, 104 | eqbrtrd 5075 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ≤ (𝑄‘𝑖)) |
106 | | elfzuz3 13109 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑀) → 𝑀 ∈ (ℤ≥‘𝑖)) |
107 | 106 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (ℤ≥‘𝑖)) |
108 | 13 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
109 | | fz0fzelfz0 13218 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀)) |
110 | 109 | adantll 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀)) |
111 | 108, 110 | ffvelrnd 6905 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
112 | 13 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ) |
113 | | 0zd 12188 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈
ℤ) |
114 | 41 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℤ) |
115 | | elfzelz 13112 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℤ) |
116 | 115 | adantl 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℤ) |
117 | | 0red 10836 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈
ℝ) |
118 | 50 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖 ∈ ℝ) |
119 | 115 | zred 12282 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℝ) |
120 | 119 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ) |
121 | | elfzle1 13115 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖) |
122 | 121 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑖) |
123 | | elfzle1 13115 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑖 ≤ 𝑗) |
124 | 123 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖 ≤ 𝑗) |
125 | 117, 118,
120, 122, 124 | letrd 10989 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗) |
126 | 125 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗) |
127 | 119 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ) |
128 | 2 | nnred 11845 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℝ) |
129 | 128 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℝ) |
130 | | 1red 10834 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈
ℝ) |
131 | 129, 130 | resubcld 11260 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ) |
132 | | elfzle2 13116 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ≤ (𝑀 − 1)) |
133 | 132 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ (𝑀 − 1)) |
134 | 129 | ltm1d 11764 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) < 𝑀) |
135 | 127, 131,
129, 133, 134 | lelttrd 10990 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀) |
136 | 127, 129,
135 | ltled 10980 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ 𝑀) |
137 | 136 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ 𝑀) |
138 | 113, 114,
116, 126, 137 | elfzd 13103 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0...𝑀)) |
139 | 112, 138 | ffvelrnd 6905 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘𝑗) ∈ ℝ) |
140 | 116 | peano2zd 12285 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ ℤ) |
141 | 119 | adantl 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ) |
142 | | 1red 10834 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈
ℝ) |
143 | | 0le1 11355 |
. . . . . . . . . . . 12
⊢ 0 ≤
1 |
144 | 143 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤
1) |
145 | 141, 142,
126, 144 | addge0d 11408 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ (𝑗 + 1)) |
146 | 127, 131,
130, 133 | leadd1dd 11446 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ ((𝑀 − 1) + 1)) |
147 | 2 | nncnd 11846 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℂ) |
148 | 147 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℂ) |
149 | | 1cnd 10828 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈
ℂ) |
150 | 148, 149 | npcand 11193 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀) |
151 | 146, 150 | breqtrd 5079 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀) |
152 | 151 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀) |
153 | 113, 114,
140, 145, 152 | elfzd 13103 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ (0...𝑀)) |
154 | 112, 153 | ffvelrnd 6905 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ) |
155 | | simpll 767 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝜑) |
156 | 135 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀) |
157 | 116, 113,
114, 81 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗 ∧ 𝑗 < 𝑀))) |
158 | 126, 156,
157 | mpbir2and 713 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0..^𝑀)) |
159 | 155, 158,
101 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))) |
160 | 139, 154,
159 | ltled 10980 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘𝑗) ≤ (𝑄‘(𝑗 + 1))) |
161 | 107, 111,
160 | monoord 13606 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ≤ (𝑄‘𝑀)) |
162 | 28 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑀) = 𝐵) |
163 | 161, 162 | breqtrd 5079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ≤ 𝐵) |
164 | 27, 33, 34, 105, 163 | eliccd 42717 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ (𝐴[,]𝐵)) |
165 | 164 | ralrimiva 3105 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑄‘𝑖) ∈ (𝐴[,]𝐵)) |
166 | | fnfvrnss 6937 |
. . 3
⊢ ((𝑄 Fn (0...𝑀) ∧ ∀𝑖 ∈ (0...𝑀)(𝑄‘𝑖) ∈ (𝐴[,]𝐵)) → ran 𝑄 ⊆ (𝐴[,]𝐵)) |
167 | 15, 165, 166 | syl2anc 587 |
. 2
⊢ (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵)) |
168 | | df-f 6384 |
. 2
⊢ (𝑄:(0...𝑀)⟶(𝐴[,]𝐵) ↔ (𝑄 Fn (0...𝑀) ∧ ran 𝑄 ⊆ (𝐴[,]𝐵))) |
169 | 15, 167, 168 | sylanbrc 586 |
1
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |