Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem15 Structured version   Visualization version   GIF version

Theorem fourierdlem15 46078
Description: The range of the partition is between its starting point and its ending point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem15.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem15.2 (𝜑𝑀 ∈ ℕ)
fourierdlem15.3 (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem15 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝐵,𝑖,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem15
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem15.3 . . . . . 6 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem15.2 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
3 fourierdlem15.1 . . . . . . . 8 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 46065 . . . . . . 7 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . 6 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 232 . . . . 5 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simpld 494 . . . 4 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
8 reex 11244 . . . . . 6 ℝ ∈ V
98a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
10 ovex 7464 . . . . . 6 (0...𝑀) ∈ V
1110a1i 11 . . . . 5 (𝜑 → (0...𝑀) ∈ V)
129, 11elmapd 8879 . . . 4 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ))
137, 12mpbid 232 . . 3 (𝜑𝑄:(0...𝑀)⟶ℝ)
14 ffn 6737 . . 3 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
1513, 14syl 17 . 2 (𝜑𝑄 Fn (0...𝑀))
166simprd 495 . . . . . . . . 9 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
1716simpld 494 . . . . . . . 8 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
1817simpld 494 . . . . . . 7 (𝜑 → (𝑄‘0) = 𝐴)
19 nnnn0 12531 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
20 nn0uz 12918 . . . . . . . . . . 11 0 = (ℤ‘0)
2119, 20eleqtrdi 2849 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘0))
222, 21syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ‘0))
23 eluzfz1 13568 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
2422, 23syl 17 . . . . . . . 8 (𝜑 → 0 ∈ (0...𝑀))
2513, 24ffvelcdmd 7105 . . . . . . 7 (𝜑 → (𝑄‘0) ∈ ℝ)
2618, 25eqeltrrd 2840 . . . . . 6 (𝜑𝐴 ∈ ℝ)
2726adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℝ)
2817simprd 495 . . . . . . 7 (𝜑 → (𝑄𝑀) = 𝐵)
29 eluzfz2 13569 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
3022, 29syl 17 . . . . . . . 8 (𝜑𝑀 ∈ (0...𝑀))
3113, 30ffvelcdmd 7105 . . . . . . 7 (𝜑 → (𝑄𝑀) ∈ ℝ)
3228, 31eqeltrrd 2840 . . . . . 6 (𝜑𝐵 ∈ ℝ)
3332adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐵 ∈ ℝ)
3413ffvelcdmda 7104 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
3518eqcomd 2741 . . . . . . 7 (𝜑𝐴 = (𝑄‘0))
3635adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐴 = (𝑄‘0))
37 elfzuz 13557 . . . . . . . 8 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ (ℤ‘0))
3837adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (ℤ‘0))
3913ad2antrr 726 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑄:(0...𝑀)⟶ℝ)
40 0zd 12623 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ∈ ℤ)
41 elfzel2 13559 . . . . . . . . . . 11 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
4241adantr 480 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℤ)
43 elfzelz 13561 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℤ)
4443adantl 481 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℤ)
45 elfzle1 13564 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑖) → 0 ≤ 𝑗)
4645adantl 481 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ≤ 𝑗)
4743zred 12720 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℝ)
4847adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℝ)
49 elfzelz 13561 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ)
5049zred 12720 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ)
5150adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖 ∈ ℝ)
5241zred 12720 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
5352adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℝ)
54 elfzle2 13565 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑖) → 𝑗𝑖)
5554adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗𝑖)
56 elfzle2 13565 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖𝑀)
5756adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖𝑀)
5848, 51, 53, 55, 57letrd 11416 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗𝑀)
5940, 42, 44, 46, 58elfzd 13552 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀))
6059adantll 714 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀))
6139, 60ffvelcdmd 7105 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → (𝑄𝑗) ∈ ℝ)
62 simpll 767 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝜑)
63 elfzle1 13564 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑖 − 1)) → 0 ≤ 𝑗)
6463adantl 481 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ≤ 𝑗)
65 elfzelz 13561 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℤ)
6665zred 12720 . . . . . . . . . . . 12 (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℝ)
6766adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℝ)
6850adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖 ∈ ℝ)
6952adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℝ)
70 peano2rem 11574 . . . . . . . . . . . . 13 (𝑖 ∈ ℝ → (𝑖 − 1) ∈ ℝ)
7168, 70syl 17 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) ∈ ℝ)
72 elfzle2 13565 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ≤ (𝑖 − 1))
7372adantl 481 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ≤ (𝑖 − 1))
7468ltm1d 12198 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) < 𝑖)
7567, 71, 68, 73, 74lelttrd 11417 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑖)
7656adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖𝑀)
7767, 68, 69, 75, 76ltletrd 11419 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑀)
7865adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℤ)
79 0zd 12623 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ∈ ℤ)
8041adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℤ)
81 elfzo 13698 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗𝑗 < 𝑀)))
8278, 79, 80, 81syl3anc 1370 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗𝑗 < 𝑀)))
8364, 77, 82mpbir2and 713 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀))
8483adantll 714 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀))
8513adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
86 elfzofz 13712 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
8786adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
8885, 87ffvelcdmd 7105 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ)
89 fzofzp1 13800 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
9089adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
9185, 90ffvelcdmd 7105 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
92 eleq1w 2822 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀)))
9392anbi2d 630 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑗 ∈ (0..^𝑀))))
94 fveq2 6907 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
95 oveq1 7438 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
9695fveq2d 6911 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
9794, 96breq12d 5161 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄𝑗) < (𝑄‘(𝑗 + 1))))
9893, 97imbi12d 344 . . . . . . . . . 10 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) < (𝑄‘(𝑗 + 1)))))
9916simprd 495 . . . . . . . . . . 11 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
10099r19.21bi 3249 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
10198, 100chvarvv 1996 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) < (𝑄‘(𝑗 + 1)))
10288, 91, 101ltled 11407 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ≤ (𝑄‘(𝑗 + 1)))
10362, 84, 102syl2anc 584 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑄𝑗) ≤ (𝑄‘(𝑗 + 1)))
10438, 61, 103monoord 14070 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄𝑖))
10536, 104eqbrtrd 5170 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐴 ≤ (𝑄𝑖))
106 elfzuz3 13558 . . . . . . . 8 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ (ℤ𝑖))
107106adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (ℤ𝑖))
10813ad2antrr 726 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
109 fz0fzelfz0 13671 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀))
110109adantll 714 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀))
111108, 110ffvelcdmd 7105 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → (𝑄𝑗) ∈ ℝ)
11213ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ)
113 0zd 12623 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈ ℤ)
11441ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℤ)
115 elfzelz 13561 . . . . . . . . . . 11 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℤ)
116115adantl 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℤ)
117 0red 11262 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈ ℝ)
11850adantr 480 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖 ∈ ℝ)
119115zred 12720 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℝ)
120119adantl 481 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ)
121 elfzle1 13564 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖)
122121adantr 480 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑖)
123 elfzle1 13564 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑖𝑗)
124123adantl 481 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖𝑗)
125117, 118, 120, 122, 124letrd 11416 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗)
126125adantll 714 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗)
127119adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ)
1282nnred 12279 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
129128adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℝ)
130 1red 11260 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈ ℝ)
131129, 130resubcld 11689 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ)
132 elfzle2 13565 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ≤ (𝑀 − 1))
133132adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ (𝑀 − 1))
134129ltm1d 12198 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) < 𝑀)
135127, 131, 129, 133, 134lelttrd 11417 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀)
136127, 129, 135ltled 11407 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗𝑀)
137136adantlr 715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗𝑀)
138113, 114, 116, 126, 137elfzd 13552 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0...𝑀))
139112, 138ffvelcdmd 7105 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄𝑗) ∈ ℝ)
140116peano2zd 12723 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ ℤ)
141119adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ)
142 1red 11260 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈ ℝ)
143 0le1 11784 . . . . . . . . . . . 12 0 ≤ 1
144143a1i 11 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 1)
145141, 142, 126, 144addge0d 11837 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ (𝑗 + 1))
146127, 131, 130, 133leadd1dd 11875 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ ((𝑀 − 1) + 1))
1472nncnd 12280 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℂ)
148147adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℂ)
149 1cnd 11254 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈ ℂ)
150148, 149npcand 11622 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
151146, 150breqtrd 5174 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀)
152151adantlr 715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀)
153113, 114, 140, 145, 152elfzd 13552 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ (0...𝑀))
154112, 153ffvelcdmd 7105 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
155 simpll 767 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝜑)
156135adantlr 715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀)
157116, 113, 114, 81syl3anc 1370 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗𝑗 < 𝑀)))
158126, 156, 157mpbir2and 713 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0..^𝑀))
159155, 158, 101syl2anc 584 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄𝑗) < (𝑄‘(𝑗 + 1)))
160139, 154, 159ltled 11407 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄𝑗) ≤ (𝑄‘(𝑗 + 1)))
161107, 111, 160monoord 14070 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑀))
16228adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑀) = 𝐵)
163161, 162breqtrd 5174 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ 𝐵)
16427, 33, 34, 105, 163eliccd 45457 . . . 4 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ (𝐴[,]𝐵))
165164ralrimiva 3144 . . 3 (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑄𝑖) ∈ (𝐴[,]𝐵))
166 fnfvrnss 7141 . . 3 ((𝑄 Fn (0...𝑀) ∧ ∀𝑖 ∈ (0...𝑀)(𝑄𝑖) ∈ (𝐴[,]𝐵)) → ran 𝑄 ⊆ (𝐴[,]𝐵))
16715, 165, 166syl2anc 584 . 2 (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵))
168 df-f 6567 . 2 (𝑄:(0...𝑀)⟶(𝐴[,]𝐵) ↔ (𝑄 Fn (0...𝑀) ∧ ran 𝑄 ⊆ (𝐴[,]𝐵)))
16915, 167, 168sylanbrc 583 1 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  wss 3963   class class class wbr 5148  cmpt 5231  ran crn 5690   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  0cn0 12524  cz 12611  cuz 12876  [,]cicc 13387  ...cfz 13544  ..^cfzo 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-icc 13391  df-fz 13545  df-fzo 13692
This theorem is referenced by:  fourierdlem38  46101  fourierdlem50  46112  fourierdlem54  46116  fourierdlem63  46125  fourierdlem65  46127  fourierdlem69  46131  fourierdlem70  46132  fourierdlem74  46136  fourierdlem75  46137  fourierdlem76  46138  fourierdlem79  46141  fourierdlem81  46143  fourierdlem84  46146  fourierdlem85  46147  fourierdlem88  46150  fourierdlem89  46151  fourierdlem90  46152  fourierdlem91  46153  fourierdlem92  46154  fourierdlem93  46155  fourierdlem100  46162  fourierdlem101  46163  fourierdlem103  46165  fourierdlem104  46166  fourierdlem107  46169  fourierdlem111  46173  fourierdlem112  46174  fourierdlem113  46175
  Copyright terms: Public domain W3C validator