Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem15 Structured version   Visualization version   GIF version

Theorem fourierdlem15 46120
Description: The range of the partition is between its starting point and its ending point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem15.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem15.2 (𝜑𝑀 ∈ ℕ)
fourierdlem15.3 (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem15 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝐵,𝑖,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem15
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem15.3 . . . . . 6 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem15.2 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
3 fourierdlem15.1 . . . . . . . 8 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 46107 . . . . . . 7 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . 6 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 232 . . . . 5 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simpld 494 . . . 4 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
8 reex 11159 . . . . . 6 ℝ ∈ V
98a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
10 ovex 7420 . . . . . 6 (0...𝑀) ∈ V
1110a1i 11 . . . . 5 (𝜑 → (0...𝑀) ∈ V)
129, 11elmapd 8813 . . . 4 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ))
137, 12mpbid 232 . . 3 (𝜑𝑄:(0...𝑀)⟶ℝ)
14 ffn 6688 . . 3 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
1513, 14syl 17 . 2 (𝜑𝑄 Fn (0...𝑀))
166simprd 495 . . . . . . . . 9 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
1716simpld 494 . . . . . . . 8 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
1817simpld 494 . . . . . . 7 (𝜑 → (𝑄‘0) = 𝐴)
19 nnnn0 12449 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
20 nn0uz 12835 . . . . . . . . . . 11 0 = (ℤ‘0)
2119, 20eleqtrdi 2838 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘0))
222, 21syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ‘0))
23 eluzfz1 13492 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
2422, 23syl 17 . . . . . . . 8 (𝜑 → 0 ∈ (0...𝑀))
2513, 24ffvelcdmd 7057 . . . . . . 7 (𝜑 → (𝑄‘0) ∈ ℝ)
2618, 25eqeltrrd 2829 . . . . . 6 (𝜑𝐴 ∈ ℝ)
2726adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℝ)
2817simprd 495 . . . . . . 7 (𝜑 → (𝑄𝑀) = 𝐵)
29 eluzfz2 13493 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
3022, 29syl 17 . . . . . . . 8 (𝜑𝑀 ∈ (0...𝑀))
3113, 30ffvelcdmd 7057 . . . . . . 7 (𝜑 → (𝑄𝑀) ∈ ℝ)
3228, 31eqeltrrd 2829 . . . . . 6 (𝜑𝐵 ∈ ℝ)
3332adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐵 ∈ ℝ)
3413ffvelcdmda 7056 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
3518eqcomd 2735 . . . . . . 7 (𝜑𝐴 = (𝑄‘0))
3635adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐴 = (𝑄‘0))
37 elfzuz 13481 . . . . . . . 8 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ (ℤ‘0))
3837adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (ℤ‘0))
3913ad2antrr 726 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑄:(0...𝑀)⟶ℝ)
40 0zd 12541 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ∈ ℤ)
41 elfzel2 13483 . . . . . . . . . . 11 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
4241adantr 480 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℤ)
43 elfzelz 13485 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℤ)
4443adantl 481 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℤ)
45 elfzle1 13488 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑖) → 0 ≤ 𝑗)
4645adantl 481 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ≤ 𝑗)
4743zred 12638 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℝ)
4847adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℝ)
49 elfzelz 13485 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ)
5049zred 12638 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ)
5150adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖 ∈ ℝ)
5241zred 12638 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
5352adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℝ)
54 elfzle2 13489 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑖) → 𝑗𝑖)
5554adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗𝑖)
56 elfzle2 13489 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖𝑀)
5756adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖𝑀)
5848, 51, 53, 55, 57letrd 11331 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗𝑀)
5940, 42, 44, 46, 58elfzd 13476 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀))
6059adantll 714 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀))
6139, 60ffvelcdmd 7057 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → (𝑄𝑗) ∈ ℝ)
62 simpll 766 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝜑)
63 elfzle1 13488 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑖 − 1)) → 0 ≤ 𝑗)
6463adantl 481 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ≤ 𝑗)
65 elfzelz 13485 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℤ)
6665zred 12638 . . . . . . . . . . . 12 (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℝ)
6766adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℝ)
6850adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖 ∈ ℝ)
6952adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℝ)
70 peano2rem 11489 . . . . . . . . . . . . 13 (𝑖 ∈ ℝ → (𝑖 − 1) ∈ ℝ)
7168, 70syl 17 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) ∈ ℝ)
72 elfzle2 13489 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ≤ (𝑖 − 1))
7372adantl 481 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ≤ (𝑖 − 1))
7468ltm1d 12115 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) < 𝑖)
7567, 71, 68, 73, 74lelttrd 11332 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑖)
7656adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖𝑀)
7767, 68, 69, 75, 76ltletrd 11334 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑀)
7865adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℤ)
79 0zd 12541 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ∈ ℤ)
8041adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℤ)
81 elfzo 13622 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗𝑗 < 𝑀)))
8278, 79, 80, 81syl3anc 1373 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗𝑗 < 𝑀)))
8364, 77, 82mpbir2and 713 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀))
8483adantll 714 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀))
8513adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
86 elfzofz 13636 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
8786adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
8885, 87ffvelcdmd 7057 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ)
89 fzofzp1 13725 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
9089adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
9185, 90ffvelcdmd 7057 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
92 eleq1w 2811 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀)))
9392anbi2d 630 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑗 ∈ (0..^𝑀))))
94 fveq2 6858 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
95 oveq1 7394 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
9695fveq2d 6862 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
9794, 96breq12d 5120 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄𝑗) < (𝑄‘(𝑗 + 1))))
9893, 97imbi12d 344 . . . . . . . . . 10 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) < (𝑄‘(𝑗 + 1)))))
9916simprd 495 . . . . . . . . . . 11 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
10099r19.21bi 3229 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
10198, 100chvarvv 1989 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) < (𝑄‘(𝑗 + 1)))
10288, 91, 101ltled 11322 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ≤ (𝑄‘(𝑗 + 1)))
10362, 84, 102syl2anc 584 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑄𝑗) ≤ (𝑄‘(𝑗 + 1)))
10438, 61, 103monoord 13997 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄𝑖))
10536, 104eqbrtrd 5129 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐴 ≤ (𝑄𝑖))
106 elfzuz3 13482 . . . . . . . 8 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ (ℤ𝑖))
107106adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (ℤ𝑖))
10813ad2antrr 726 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
109 fz0fzelfz0 13595 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀))
110109adantll 714 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀))
111108, 110ffvelcdmd 7057 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → (𝑄𝑗) ∈ ℝ)
11213ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ)
113 0zd 12541 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈ ℤ)
11441ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℤ)
115 elfzelz 13485 . . . . . . . . . . 11 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℤ)
116115adantl 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℤ)
117 0red 11177 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈ ℝ)
11850adantr 480 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖 ∈ ℝ)
119115zred 12638 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℝ)
120119adantl 481 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ)
121 elfzle1 13488 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖)
122121adantr 480 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑖)
123 elfzle1 13488 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑖𝑗)
124123adantl 481 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖𝑗)
125117, 118, 120, 122, 124letrd 11331 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗)
126125adantll 714 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗)
127119adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ)
1282nnred 12201 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
129128adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℝ)
130 1red 11175 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈ ℝ)
131129, 130resubcld 11606 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ)
132 elfzle2 13489 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ≤ (𝑀 − 1))
133132adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ (𝑀 − 1))
134129ltm1d 12115 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) < 𝑀)
135127, 131, 129, 133, 134lelttrd 11332 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀)
136127, 129, 135ltled 11322 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗𝑀)
137136adantlr 715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗𝑀)
138113, 114, 116, 126, 137elfzd 13476 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0...𝑀))
139112, 138ffvelcdmd 7057 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄𝑗) ∈ ℝ)
140116peano2zd 12641 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ ℤ)
141119adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ)
142 1red 11175 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈ ℝ)
143 0le1 11701 . . . . . . . . . . . 12 0 ≤ 1
144143a1i 11 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 1)
145141, 142, 126, 144addge0d 11754 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ (𝑗 + 1))
146127, 131, 130, 133leadd1dd 11792 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ ((𝑀 − 1) + 1))
1472nncnd 12202 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℂ)
148147adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℂ)
149 1cnd 11169 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈ ℂ)
150148, 149npcand 11537 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
151146, 150breqtrd 5133 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀)
152151adantlr 715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀)
153113, 114, 140, 145, 152elfzd 13476 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ (0...𝑀))
154112, 153ffvelcdmd 7057 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
155 simpll 766 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝜑)
156135adantlr 715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀)
157116, 113, 114, 81syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗𝑗 < 𝑀)))
158126, 156, 157mpbir2and 713 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0..^𝑀))
159155, 158, 101syl2anc 584 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄𝑗) < (𝑄‘(𝑗 + 1)))
160139, 154, 159ltled 11322 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄𝑗) ≤ (𝑄‘(𝑗 + 1)))
161107, 111, 160monoord 13997 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑀))
16228adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑀) = 𝐵)
163161, 162breqtrd 5133 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ 𝐵)
16427, 33, 34, 105, 163eliccd 45502 . . . 4 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ (𝐴[,]𝐵))
165164ralrimiva 3125 . . 3 (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑄𝑖) ∈ (𝐴[,]𝐵))
166 fnfvrnss 7093 . . 3 ((𝑄 Fn (0...𝑀) ∧ ∀𝑖 ∈ (0...𝑀)(𝑄𝑖) ∈ (𝐴[,]𝐵)) → ran 𝑄 ⊆ (𝐴[,]𝐵))
16715, 165, 166syl2anc 584 . 2 (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵))
168 df-f 6515 . 2 (𝑄:(0...𝑀)⟶(𝐴[,]𝐵) ↔ (𝑄 Fn (0...𝑀) ∧ ran 𝑄 ⊆ (𝐴[,]𝐵)))
16915, 167, 168sylanbrc 583 1 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cn 12186  0cn0 12442  cz 12529  cuz 12793  [,]cicc 13309  ...cfz 13468  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-icc 13313  df-fz 13469  df-fzo 13616
This theorem is referenced by:  fourierdlem38  46143  fourierdlem50  46154  fourierdlem54  46158  fourierdlem63  46167  fourierdlem65  46169  fourierdlem69  46173  fourierdlem70  46174  fourierdlem74  46178  fourierdlem75  46179  fourierdlem76  46180  fourierdlem79  46183  fourierdlem81  46185  fourierdlem84  46188  fourierdlem85  46189  fourierdlem88  46192  fourierdlem89  46193  fourierdlem90  46194  fourierdlem91  46195  fourierdlem92  46196  fourierdlem93  46197  fourierdlem100  46204  fourierdlem101  46205  fourierdlem103  46207  fourierdlem104  46208  fourierdlem107  46211  fourierdlem111  46215  fourierdlem112  46216  fourierdlem113  46217
  Copyright terms: Public domain W3C validator