Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem15 Structured version   Visualization version   GIF version

Theorem fourierdlem15 46282
Description: The range of the partition is between its starting point and its ending point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem15.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem15.2 (𝜑𝑀 ∈ ℕ)
fourierdlem15.3 (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem15 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝐵,𝑖,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem15
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem15.3 . . . . . 6 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem15.2 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
3 fourierdlem15.1 . . . . . . . 8 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 46269 . . . . . . 7 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . 6 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 232 . . . . 5 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simpld 494 . . . 4 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
8 reex 11108 . . . . . 6 ℝ ∈ V
98a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
10 ovex 7388 . . . . . 6 (0...𝑀) ∈ V
1110a1i 11 . . . . 5 (𝜑 → (0...𝑀) ∈ V)
129, 11elmapd 8773 . . . 4 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ))
137, 12mpbid 232 . . 3 (𝜑𝑄:(0...𝑀)⟶ℝ)
14 ffn 6659 . . 3 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
1513, 14syl 17 . 2 (𝜑𝑄 Fn (0...𝑀))
166simprd 495 . . . . . . . . 9 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
1716simpld 494 . . . . . . . 8 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
1817simpld 494 . . . . . . 7 (𝜑 → (𝑄‘0) = 𝐴)
19 nnnn0 12399 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
20 nn0uz 12780 . . . . . . . . . . 11 0 = (ℤ‘0)
2119, 20eleqtrdi 2843 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘0))
222, 21syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ‘0))
23 eluzfz1 13438 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
2422, 23syl 17 . . . . . . . 8 (𝜑 → 0 ∈ (0...𝑀))
2513, 24ffvelcdmd 7027 . . . . . . 7 (𝜑 → (𝑄‘0) ∈ ℝ)
2618, 25eqeltrrd 2834 . . . . . 6 (𝜑𝐴 ∈ ℝ)
2726adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℝ)
2817simprd 495 . . . . . . 7 (𝜑 → (𝑄𝑀) = 𝐵)
29 eluzfz2 13439 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
3022, 29syl 17 . . . . . . . 8 (𝜑𝑀 ∈ (0...𝑀))
3113, 30ffvelcdmd 7027 . . . . . . 7 (𝜑 → (𝑄𝑀) ∈ ℝ)
3228, 31eqeltrrd 2834 . . . . . 6 (𝜑𝐵 ∈ ℝ)
3332adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐵 ∈ ℝ)
3413ffvelcdmda 7026 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
3518eqcomd 2739 . . . . . . 7 (𝜑𝐴 = (𝑄‘0))
3635adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐴 = (𝑄‘0))
37 elfzuz 13427 . . . . . . . 8 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ (ℤ‘0))
3837adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (ℤ‘0))
3913ad2antrr 726 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑄:(0...𝑀)⟶ℝ)
40 0zd 12491 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ∈ ℤ)
41 elfzel2 13429 . . . . . . . . . . 11 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
4241adantr 480 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℤ)
43 elfzelz 13431 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℤ)
4443adantl 481 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℤ)
45 elfzle1 13434 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑖) → 0 ≤ 𝑗)
4645adantl 481 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ≤ 𝑗)
4743zred 12587 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℝ)
4847adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℝ)
49 elfzelz 13431 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ)
5049zred 12587 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ)
5150adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖 ∈ ℝ)
5241zred 12587 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
5352adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℝ)
54 elfzle2 13435 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑖) → 𝑗𝑖)
5554adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗𝑖)
56 elfzle2 13435 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖𝑀)
5756adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖𝑀)
5848, 51, 53, 55, 57letrd 11281 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗𝑀)
5940, 42, 44, 46, 58elfzd 13422 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀))
6059adantll 714 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀))
6139, 60ffvelcdmd 7027 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → (𝑄𝑗) ∈ ℝ)
62 simpll 766 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝜑)
63 elfzle1 13434 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑖 − 1)) → 0 ≤ 𝑗)
6463adantl 481 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ≤ 𝑗)
65 elfzelz 13431 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℤ)
6665zred 12587 . . . . . . . . . . . 12 (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℝ)
6766adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℝ)
6850adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖 ∈ ℝ)
6952adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℝ)
70 peano2rem 11439 . . . . . . . . . . . . 13 (𝑖 ∈ ℝ → (𝑖 − 1) ∈ ℝ)
7168, 70syl 17 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) ∈ ℝ)
72 elfzle2 13435 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ≤ (𝑖 − 1))
7372adantl 481 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ≤ (𝑖 − 1))
7468ltm1d 12065 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) < 𝑖)
7567, 71, 68, 73, 74lelttrd 11282 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑖)
7656adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖𝑀)
7767, 68, 69, 75, 76ltletrd 11284 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑀)
7865adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℤ)
79 0zd 12491 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ∈ ℤ)
8041adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℤ)
81 elfzo 13568 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗𝑗 < 𝑀)))
8278, 79, 80, 81syl3anc 1373 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗𝑗 < 𝑀)))
8364, 77, 82mpbir2and 713 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀))
8483adantll 714 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀))
8513adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
86 elfzofz 13582 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
8786adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
8885, 87ffvelcdmd 7027 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ)
89 fzofzp1 13671 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
9089adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
9185, 90ffvelcdmd 7027 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
92 eleq1w 2816 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀)))
9392anbi2d 630 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑗 ∈ (0..^𝑀))))
94 fveq2 6831 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
95 oveq1 7362 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
9695fveq2d 6835 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
9794, 96breq12d 5108 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄𝑗) < (𝑄‘(𝑗 + 1))))
9893, 97imbi12d 344 . . . . . . . . . 10 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) < (𝑄‘(𝑗 + 1)))))
9916simprd 495 . . . . . . . . . . 11 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
10099r19.21bi 3225 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
10198, 100chvarvv 1990 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) < (𝑄‘(𝑗 + 1)))
10288, 91, 101ltled 11272 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ≤ (𝑄‘(𝑗 + 1)))
10362, 84, 102syl2anc 584 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑄𝑗) ≤ (𝑄‘(𝑗 + 1)))
10438, 61, 103monoord 13946 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄𝑖))
10536, 104eqbrtrd 5117 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐴 ≤ (𝑄𝑖))
106 elfzuz3 13428 . . . . . . . 8 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ (ℤ𝑖))
107106adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (ℤ𝑖))
10813ad2antrr 726 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
109 fz0fzelfz0 13541 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀))
110109adantll 714 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀))
111108, 110ffvelcdmd 7027 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → (𝑄𝑗) ∈ ℝ)
11213ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ)
113 0zd 12491 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈ ℤ)
11441ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℤ)
115 elfzelz 13431 . . . . . . . . . . 11 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℤ)
116115adantl 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℤ)
117 0red 11126 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈ ℝ)
11850adantr 480 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖 ∈ ℝ)
119115zred 12587 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℝ)
120119adantl 481 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ)
121 elfzle1 13434 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖)
122121adantr 480 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑖)
123 elfzle1 13434 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑖𝑗)
124123adantl 481 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖𝑗)
125117, 118, 120, 122, 124letrd 11281 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗)
126125adantll 714 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗)
127119adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ)
1282nnred 12151 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
129128adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℝ)
130 1red 11124 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈ ℝ)
131129, 130resubcld 11556 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ)
132 elfzle2 13435 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ≤ (𝑀 − 1))
133132adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ (𝑀 − 1))
134129ltm1d 12065 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) < 𝑀)
135127, 131, 129, 133, 134lelttrd 11282 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀)
136127, 129, 135ltled 11272 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗𝑀)
137136adantlr 715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗𝑀)
138113, 114, 116, 126, 137elfzd 13422 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0...𝑀))
139112, 138ffvelcdmd 7027 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄𝑗) ∈ ℝ)
140116peano2zd 12590 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ ℤ)
141119adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ)
142 1red 11124 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈ ℝ)
143 0le1 11651 . . . . . . . . . . . 12 0 ≤ 1
144143a1i 11 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 1)
145141, 142, 126, 144addge0d 11704 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ (𝑗 + 1))
146127, 131, 130, 133leadd1dd 11742 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ ((𝑀 − 1) + 1))
1472nncnd 12152 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℂ)
148147adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℂ)
149 1cnd 11118 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈ ℂ)
150148, 149npcand 11487 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
151146, 150breqtrd 5121 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀)
152151adantlr 715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀)
153113, 114, 140, 145, 152elfzd 13422 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ (0...𝑀))
154112, 153ffvelcdmd 7027 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
155 simpll 766 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝜑)
156135adantlr 715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀)
157116, 113, 114, 81syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗𝑗 < 𝑀)))
158126, 156, 157mpbir2and 713 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0..^𝑀))
159155, 158, 101syl2anc 584 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄𝑗) < (𝑄‘(𝑗 + 1)))
160139, 154, 159ltled 11272 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄𝑗) ≤ (𝑄‘(𝑗 + 1)))
161107, 111, 160monoord 13946 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑀))
16228adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑀) = 𝐵)
163161, 162breqtrd 5121 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ 𝐵)
16427, 33, 34, 105, 163eliccd 45666 . . . 4 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ (𝐴[,]𝐵))
165164ralrimiva 3125 . . 3 (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑄𝑖) ∈ (𝐴[,]𝐵))
166 fnfvrnss 7063 . . 3 ((𝑄 Fn (0...𝑀) ∧ ∀𝑖 ∈ (0...𝑀)(𝑄𝑖) ∈ (𝐴[,]𝐵)) → ran 𝑄 ⊆ (𝐴[,]𝐵))
16715, 165, 166syl2anc 584 . 2 (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵))
168 df-f 6493 . 2 (𝑄:(0...𝑀)⟶(𝐴[,]𝐵) ↔ (𝑄 Fn (0...𝑀) ∧ ran 𝑄 ⊆ (𝐴[,]𝐵)))
16915, 167, 168sylanbrc 583 1 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437  wss 3898   class class class wbr 5095  cmpt 5176  ran crn 5622   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  m cmap 8759  cc 11015  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   < clt 11157  cle 11158  cmin 11355  cn 12136  0cn0 12392  cz 12479  cuz 12742  [,]cicc 13255  ...cfz 13414  ..^cfzo 13561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-icc 13259  df-fz 13415  df-fzo 13562
This theorem is referenced by:  fourierdlem38  46305  fourierdlem50  46316  fourierdlem54  46320  fourierdlem63  46329  fourierdlem65  46331  fourierdlem69  46335  fourierdlem70  46336  fourierdlem74  46340  fourierdlem75  46341  fourierdlem76  46342  fourierdlem79  46345  fourierdlem81  46347  fourierdlem84  46350  fourierdlem85  46351  fourierdlem88  46354  fourierdlem89  46355  fourierdlem90  46356  fourierdlem91  46357  fourierdlem92  46358  fourierdlem93  46359  fourierdlem100  46366  fourierdlem101  46367  fourierdlem103  46369  fourierdlem104  46370  fourierdlem107  46373  fourierdlem111  46377  fourierdlem112  46378  fourierdlem113  46379
  Copyright terms: Public domain W3C validator