| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem15.3 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
| 2 | | fourierdlem15.2 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | | fourierdlem15.1 |
. . . . . . . 8
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 4 | 3 | fourierdlem2 46105 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 5 | 2, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 6 | 1, 5 | mpbid 232 |
. . . . 5
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
| 7 | 6 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
| 8 | | reex 11225 |
. . . . . 6
⊢ ℝ
∈ V |
| 9 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
V) |
| 10 | | ovex 7443 |
. . . . . 6
⊢
(0...𝑀) ∈
V |
| 11 | 10 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0...𝑀) ∈ V) |
| 12 | 9, 11 | elmapd 8859 |
. . . 4
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)) |
| 13 | 7, 12 | mpbid 232 |
. . 3
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
| 14 | | ffn 6711 |
. . 3
⊢ (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀)) |
| 15 | 13, 14 | syl 17 |
. 2
⊢ (𝜑 → 𝑄 Fn (0...𝑀)) |
| 16 | 6 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
| 17 | 16 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
| 18 | 17 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
| 19 | | nnnn0 12513 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
| 20 | | nn0uz 12899 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
| 21 | 19, 20 | eleqtrdi 2845 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
(ℤ≥‘0)) |
| 22 | 2, 21 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
| 23 | | eluzfz1 13553 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
| 24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
| 25 | 13, 24 | ffvelcdmd 7080 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
| 26 | 18, 25 | eqeltrrd 2836 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 27 | 26 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℝ) |
| 28 | 17 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
| 29 | | eluzfz2 13554 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
| 30 | 22, 29 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
| 31 | 13, 30 | ffvelcdmd 7080 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℝ) |
| 32 | 28, 31 | eqeltrrd 2836 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 33 | 32 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝐵 ∈ ℝ) |
| 34 | 13 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 35 | 18 | eqcomd 2742 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = (𝑄‘0)) |
| 36 | 35 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 = (𝑄‘0)) |
| 37 | | elfzuz 13542 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈
(ℤ≥‘0)) |
| 38 | 37 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈
(ℤ≥‘0)) |
| 39 | 13 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑄:(0...𝑀)⟶ℝ) |
| 40 | | 0zd 12605 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ∈ ℤ) |
| 41 | | elfzel2 13544 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ) |
| 42 | 41 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℤ) |
| 43 | | elfzelz 13546 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℤ) |
| 44 | 43 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℤ) |
| 45 | | elfzle1 13549 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑖) → 0 ≤ 𝑗) |
| 46 | 45 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ≤ 𝑗) |
| 47 | 43 | zred 12702 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℝ) |
| 48 | 47 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℝ) |
| 49 | | elfzelz 13546 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ) |
| 50 | 49 | zred 12702 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ) |
| 51 | 50 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖 ∈ ℝ) |
| 52 | 41 | zred 12702 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ) |
| 53 | 52 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℝ) |
| 54 | | elfzle2 13550 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ≤ 𝑖) |
| 55 | 54 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ≤ 𝑖) |
| 56 | | elfzle2 13550 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ≤ 𝑀) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖 ≤ 𝑀) |
| 58 | 48, 51, 53, 55, 57 | letrd 11397 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ≤ 𝑀) |
| 59 | 40, 42, 44, 46, 58 | elfzd 13537 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀)) |
| 60 | 59 | adantll 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀)) |
| 61 | 39, 60 | ffvelcdmd 7080 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → (𝑄‘𝑗) ∈ ℝ) |
| 62 | | simpll 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝜑) |
| 63 | | elfzle1 13549 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...(𝑖 − 1)) → 0 ≤ 𝑗) |
| 64 | 63 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ≤ 𝑗) |
| 65 | | elfzelz 13546 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℤ) |
| 66 | 65 | zred 12702 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℝ) |
| 67 | 66 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℝ) |
| 68 | 50 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖 ∈ ℝ) |
| 69 | 52 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℝ) |
| 70 | | peano2rem 11555 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℝ → (𝑖 − 1) ∈
ℝ) |
| 71 | 68, 70 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) ∈ ℝ) |
| 72 | | elfzle2 13550 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ≤ (𝑖 − 1)) |
| 73 | 72 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ≤ (𝑖 − 1)) |
| 74 | 68 | ltm1d 12179 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) < 𝑖) |
| 75 | 67, 71, 68, 73, 74 | lelttrd 11398 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑖) |
| 76 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖 ≤ 𝑀) |
| 77 | 67, 68, 69, 75, 76 | ltletrd 11400 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑀) |
| 78 | 65 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℤ) |
| 79 | | 0zd 12605 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ∈
ℤ) |
| 80 | 41 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℤ) |
| 81 | | elfzo 13683 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → (𝑗 ∈
(0..^𝑀) ↔ (0 ≤
𝑗 ∧ 𝑗 < 𝑀))) |
| 82 | 78, 79, 80, 81 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗 ∧ 𝑗 < 𝑀))) |
| 83 | 64, 77, 82 | mpbir2and 713 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀)) |
| 84 | 83 | adantll 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀)) |
| 85 | 13 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 86 | | elfzofz 13697 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀)) |
| 87 | 86 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 88 | 85, 87 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
| 89 | | fzofzp1 13785 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀)) |
| 90 | 89 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀)) |
| 91 | 85, 90 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ) |
| 92 | | eleq1w 2818 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀))) |
| 93 | 92 | anbi2d 630 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑗 ∈ (0..^𝑀)))) |
| 94 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
| 95 | | oveq1 7417 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1)) |
| 96 | 95 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1))) |
| 97 | 94, 96 | breq12d 5137 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘𝑗) < (𝑄‘(𝑗 + 1)))) |
| 98 | 93, 97 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))))) |
| 99 | 16 | simprd 495 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 100 | 99 | r19.21bi 3238 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 101 | 98, 100 | chvarvv 1989 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))) |
| 102 | 88, 91, 101 | ltled 11388 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) ≤ (𝑄‘(𝑗 + 1))) |
| 103 | 62, 84, 102 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑄‘𝑗) ≤ (𝑄‘(𝑗 + 1))) |
| 104 | 38, 61, 103 | monoord 14055 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄‘𝑖)) |
| 105 | 36, 104 | eqbrtrd 5146 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ≤ (𝑄‘𝑖)) |
| 106 | | elfzuz3 13543 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑀) → 𝑀 ∈ (ℤ≥‘𝑖)) |
| 107 | 106 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (ℤ≥‘𝑖)) |
| 108 | 13 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 109 | | fz0fzelfz0 13656 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 110 | 109 | adantll 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 111 | 108, 110 | ffvelcdmd 7080 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
| 112 | 13 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ) |
| 113 | | 0zd 12605 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈
ℤ) |
| 114 | 41 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℤ) |
| 115 | | elfzelz 13546 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℤ) |
| 116 | 115 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℤ) |
| 117 | | 0red 11243 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈
ℝ) |
| 118 | 50 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖 ∈ ℝ) |
| 119 | 115 | zred 12702 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℝ) |
| 120 | 119 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ) |
| 121 | | elfzle1 13549 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖) |
| 122 | 121 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑖) |
| 123 | | elfzle1 13549 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑖 ≤ 𝑗) |
| 124 | 123 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖 ≤ 𝑗) |
| 125 | 117, 118,
120, 122, 124 | letrd 11397 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗) |
| 126 | 125 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗) |
| 127 | 119 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ) |
| 128 | 2 | nnred 12260 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 129 | 128 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℝ) |
| 130 | | 1red 11241 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈
ℝ) |
| 131 | 129, 130 | resubcld 11670 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ) |
| 132 | | elfzle2 13550 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ≤ (𝑀 − 1)) |
| 133 | 132 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ (𝑀 − 1)) |
| 134 | 129 | ltm1d 12179 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) < 𝑀) |
| 135 | 127, 131,
129, 133, 134 | lelttrd 11398 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀) |
| 136 | 127, 129,
135 | ltled 11388 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ 𝑀) |
| 137 | 136 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ 𝑀) |
| 138 | 113, 114,
116, 126, 137 | elfzd 13537 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0...𝑀)) |
| 139 | 112, 138 | ffvelcdmd 7080 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘𝑗) ∈ ℝ) |
| 140 | 116 | peano2zd 12705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ ℤ) |
| 141 | 119 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ) |
| 142 | | 1red 11241 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈
ℝ) |
| 143 | | 0le1 11765 |
. . . . . . . . . . . 12
⊢ 0 ≤
1 |
| 144 | 143 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤
1) |
| 145 | 141, 142,
126, 144 | addge0d 11818 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ (𝑗 + 1)) |
| 146 | 127, 131,
130, 133 | leadd1dd 11856 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ ((𝑀 − 1) + 1)) |
| 147 | 2 | nncnd 12261 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 148 | 147 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℂ) |
| 149 | | 1cnd 11235 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈
ℂ) |
| 150 | 148, 149 | npcand 11603 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀) |
| 151 | 146, 150 | breqtrd 5150 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀) |
| 152 | 151 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀) |
| 153 | 113, 114,
140, 145, 152 | elfzd 13537 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ (0...𝑀)) |
| 154 | 112, 153 | ffvelcdmd 7080 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ) |
| 155 | | simpll 766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝜑) |
| 156 | 135 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀) |
| 157 | 116, 113,
114, 81 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗 ∧ 𝑗 < 𝑀))) |
| 158 | 126, 156,
157 | mpbir2and 713 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0..^𝑀)) |
| 159 | 155, 158,
101 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))) |
| 160 | 139, 154,
159 | ltled 11388 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘𝑗) ≤ (𝑄‘(𝑗 + 1))) |
| 161 | 107, 111,
160 | monoord 14055 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ≤ (𝑄‘𝑀)) |
| 162 | 28 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑀) = 𝐵) |
| 163 | 161, 162 | breqtrd 5150 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ≤ 𝐵) |
| 164 | 27, 33, 34, 105, 163 | eliccd 45500 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ (𝐴[,]𝐵)) |
| 165 | 164 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑄‘𝑖) ∈ (𝐴[,]𝐵)) |
| 166 | | fnfvrnss 7116 |
. . 3
⊢ ((𝑄 Fn (0...𝑀) ∧ ∀𝑖 ∈ (0...𝑀)(𝑄‘𝑖) ∈ (𝐴[,]𝐵)) → ran 𝑄 ⊆ (𝐴[,]𝐵)) |
| 167 | 15, 165, 166 | syl2anc 584 |
. 2
⊢ (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵)) |
| 168 | | df-f 6540 |
. 2
⊢ (𝑄:(0...𝑀)⟶(𝐴[,]𝐵) ↔ (𝑄 Fn (0...𝑀) ∧ ran 𝑄 ⊆ (𝐴[,]𝐵))) |
| 169 | 15, 167, 168 | sylanbrc 583 |
1
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |