Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem15 Structured version   Visualization version   GIF version

Theorem fourierdlem15 46123
Description: The range of the partition is between its starting point and its ending point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem15.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem15.2 (𝜑𝑀 ∈ ℕ)
fourierdlem15.3 (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem15 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝐵,𝑖,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem15
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem15.3 . . . . . 6 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem15.2 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
3 fourierdlem15.1 . . . . . . . 8 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 46110 . . . . . . 7 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . 6 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 232 . . . . 5 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simpld 494 . . . 4 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
8 reex 11119 . . . . . 6 ℝ ∈ V
98a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
10 ovex 7386 . . . . . 6 (0...𝑀) ∈ V
1110a1i 11 . . . . 5 (𝜑 → (0...𝑀) ∈ V)
129, 11elmapd 8774 . . . 4 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ))
137, 12mpbid 232 . . 3 (𝜑𝑄:(0...𝑀)⟶ℝ)
14 ffn 6656 . . 3 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
1513, 14syl 17 . 2 (𝜑𝑄 Fn (0...𝑀))
166simprd 495 . . . . . . . . 9 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
1716simpld 494 . . . . . . . 8 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
1817simpld 494 . . . . . . 7 (𝜑 → (𝑄‘0) = 𝐴)
19 nnnn0 12410 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
20 nn0uz 12796 . . . . . . . . . . 11 0 = (ℤ‘0)
2119, 20eleqtrdi 2838 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘0))
222, 21syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ‘0))
23 eluzfz1 13453 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
2422, 23syl 17 . . . . . . . 8 (𝜑 → 0 ∈ (0...𝑀))
2513, 24ffvelcdmd 7023 . . . . . . 7 (𝜑 → (𝑄‘0) ∈ ℝ)
2618, 25eqeltrrd 2829 . . . . . 6 (𝜑𝐴 ∈ ℝ)
2726adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℝ)
2817simprd 495 . . . . . . 7 (𝜑 → (𝑄𝑀) = 𝐵)
29 eluzfz2 13454 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
3022, 29syl 17 . . . . . . . 8 (𝜑𝑀 ∈ (0...𝑀))
3113, 30ffvelcdmd 7023 . . . . . . 7 (𝜑 → (𝑄𝑀) ∈ ℝ)
3228, 31eqeltrrd 2829 . . . . . 6 (𝜑𝐵 ∈ ℝ)
3332adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐵 ∈ ℝ)
3413ffvelcdmda 7022 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
3518eqcomd 2735 . . . . . . 7 (𝜑𝐴 = (𝑄‘0))
3635adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐴 = (𝑄‘0))
37 elfzuz 13442 . . . . . . . 8 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ (ℤ‘0))
3837adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (ℤ‘0))
3913ad2antrr 726 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑄:(0...𝑀)⟶ℝ)
40 0zd 12502 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ∈ ℤ)
41 elfzel2 13444 . . . . . . . . . . 11 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
4241adantr 480 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℤ)
43 elfzelz 13446 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℤ)
4443adantl 481 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℤ)
45 elfzle1 13449 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑖) → 0 ≤ 𝑗)
4645adantl 481 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ≤ 𝑗)
4743zred 12599 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℝ)
4847adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℝ)
49 elfzelz 13446 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ)
5049zred 12599 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ)
5150adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖 ∈ ℝ)
5241zred 12599 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
5352adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℝ)
54 elfzle2 13450 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑖) → 𝑗𝑖)
5554adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗𝑖)
56 elfzle2 13450 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖𝑀)
5756adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖𝑀)
5848, 51, 53, 55, 57letrd 11292 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗𝑀)
5940, 42, 44, 46, 58elfzd 13437 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀))
6059adantll 714 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀))
6139, 60ffvelcdmd 7023 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → (𝑄𝑗) ∈ ℝ)
62 simpll 766 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝜑)
63 elfzle1 13449 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑖 − 1)) → 0 ≤ 𝑗)
6463adantl 481 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ≤ 𝑗)
65 elfzelz 13446 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℤ)
6665zred 12599 . . . . . . . . . . . 12 (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℝ)
6766adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℝ)
6850adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖 ∈ ℝ)
6952adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℝ)
70 peano2rem 11450 . . . . . . . . . . . . 13 (𝑖 ∈ ℝ → (𝑖 − 1) ∈ ℝ)
7168, 70syl 17 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) ∈ ℝ)
72 elfzle2 13450 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ≤ (𝑖 − 1))
7372adantl 481 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ≤ (𝑖 − 1))
7468ltm1d 12076 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) < 𝑖)
7567, 71, 68, 73, 74lelttrd 11293 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑖)
7656adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖𝑀)
7767, 68, 69, 75, 76ltletrd 11295 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑀)
7865adantl 481 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℤ)
79 0zd 12502 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ∈ ℤ)
8041adantr 480 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℤ)
81 elfzo 13583 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗𝑗 < 𝑀)))
8278, 79, 80, 81syl3anc 1373 . . . . . . . . . 10 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗𝑗 < 𝑀)))
8364, 77, 82mpbir2and 713 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀))
8483adantll 714 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀))
8513adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
86 elfzofz 13597 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
8786adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
8885, 87ffvelcdmd 7023 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ)
89 fzofzp1 13686 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
9089adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
9185, 90ffvelcdmd 7023 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
92 eleq1w 2811 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀)))
9392anbi2d 630 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑗 ∈ (0..^𝑀))))
94 fveq2 6826 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
95 oveq1 7360 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
9695fveq2d 6830 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
9794, 96breq12d 5108 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄𝑗) < (𝑄‘(𝑗 + 1))))
9893, 97imbi12d 344 . . . . . . . . . 10 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) < (𝑄‘(𝑗 + 1)))))
9916simprd 495 . . . . . . . . . . 11 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
10099r19.21bi 3221 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
10198, 100chvarvv 1989 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) < (𝑄‘(𝑗 + 1)))
10288, 91, 101ltled 11283 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ≤ (𝑄‘(𝑗 + 1)))
10362, 84, 102syl2anc 584 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑄𝑗) ≤ (𝑄‘(𝑗 + 1)))
10438, 61, 103monoord 13958 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄𝑖))
10536, 104eqbrtrd 5117 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → 𝐴 ≤ (𝑄𝑖))
106 elfzuz3 13443 . . . . . . . 8 (𝑖 ∈ (0...𝑀) → 𝑀 ∈ (ℤ𝑖))
107106adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (ℤ𝑖))
10813ad2antrr 726 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
109 fz0fzelfz0 13556 . . . . . . . . 9 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀))
110109adantll 714 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀))
111108, 110ffvelcdmd 7023 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → (𝑄𝑗) ∈ ℝ)
11213ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ)
113 0zd 12502 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈ ℤ)
11441ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℤ)
115 elfzelz 13446 . . . . . . . . . . 11 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℤ)
116115adantl 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℤ)
117 0red 11137 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈ ℝ)
11850adantr 480 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖 ∈ ℝ)
119115zred 12599 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℝ)
120119adantl 481 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ)
121 elfzle1 13449 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖)
122121adantr 480 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑖)
123 elfzle1 13449 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑖𝑗)
124123adantl 481 . . . . . . . . . . . 12 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖𝑗)
125117, 118, 120, 122, 124letrd 11292 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗)
126125adantll 714 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗)
127119adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ)
1282nnred 12162 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
129128adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℝ)
130 1red 11135 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈ ℝ)
131129, 130resubcld 11567 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ)
132 elfzle2 13450 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ≤ (𝑀 − 1))
133132adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ (𝑀 − 1))
134129ltm1d 12076 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) < 𝑀)
135127, 131, 129, 133, 134lelttrd 11293 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀)
136127, 129, 135ltled 11283 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗𝑀)
137136adantlr 715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗𝑀)
138113, 114, 116, 126, 137elfzd 13437 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0...𝑀))
139112, 138ffvelcdmd 7023 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄𝑗) ∈ ℝ)
140116peano2zd 12602 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ ℤ)
141119adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ)
142 1red 11135 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈ ℝ)
143 0le1 11662 . . . . . . . . . . . 12 0 ≤ 1
144143a1i 11 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 1)
145141, 142, 126, 144addge0d 11715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ (𝑗 + 1))
146127, 131, 130, 133leadd1dd 11753 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ ((𝑀 − 1) + 1))
1472nncnd 12163 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℂ)
148147adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℂ)
149 1cnd 11129 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈ ℂ)
150148, 149npcand 11498 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
151146, 150breqtrd 5121 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀)
152151adantlr 715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀)
153113, 114, 140, 145, 152elfzd 13437 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ (0...𝑀))
154112, 153ffvelcdmd 7023 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
155 simpll 766 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝜑)
156135adantlr 715 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀)
157116, 113, 114, 81syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗𝑗 < 𝑀)))
158126, 156, 157mpbir2and 713 . . . . . . . . 9 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0..^𝑀))
159155, 158, 101syl2anc 584 . . . . . . . 8 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄𝑗) < (𝑄‘(𝑗 + 1)))
160139, 154, 159ltled 11283 . . . . . . 7 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄𝑗) ≤ (𝑄‘(𝑗 + 1)))
161107, 111, 160monoord 13958 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ (𝑄𝑀))
16228adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑀) = 𝐵)
163161, 162breqtrd 5121 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ≤ 𝐵)
16427, 33, 34, 105, 163eliccd 45505 . . . 4 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ (𝐴[,]𝐵))
165164ralrimiva 3121 . . 3 (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑄𝑖) ∈ (𝐴[,]𝐵))
166 fnfvrnss 7059 . . 3 ((𝑄 Fn (0...𝑀) ∧ ∀𝑖 ∈ (0...𝑀)(𝑄𝑖) ∈ (𝐴[,]𝐵)) → ran 𝑄 ⊆ (𝐴[,]𝐵))
16715, 165, 166syl2anc 584 . 2 (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵))
168 df-f 6490 . 2 (𝑄:(0...𝑀)⟶(𝐴[,]𝐵) ↔ (𝑄 Fn (0...𝑀) ∧ ran 𝑄 ⊆ (𝐴[,]𝐵)))
16915, 167, 168sylanbrc 583 1 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  wss 3905   class class class wbr 5095  cmpt 5176  ran crn 5624   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cle 11169  cmin 11366  cn 12147  0cn0 12403  cz 12490  cuz 12754  [,]cicc 13270  ...cfz 13429  ..^cfzo 13576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-icc 13274  df-fz 13430  df-fzo 13577
This theorem is referenced by:  fourierdlem38  46146  fourierdlem50  46157  fourierdlem54  46161  fourierdlem63  46170  fourierdlem65  46172  fourierdlem69  46176  fourierdlem70  46177  fourierdlem74  46181  fourierdlem75  46182  fourierdlem76  46183  fourierdlem79  46186  fourierdlem81  46188  fourierdlem84  46191  fourierdlem85  46192  fourierdlem88  46195  fourierdlem89  46196  fourierdlem90  46197  fourierdlem91  46198  fourierdlem92  46199  fourierdlem93  46200  fourierdlem100  46207  fourierdlem101  46208  fourierdlem103  46210  fourierdlem104  46211  fourierdlem107  46214  fourierdlem111  46218  fourierdlem112  46219  fourierdlem113  46220
  Copyright terms: Public domain W3C validator