Proof of Theorem mulgcd
| Step | Hyp | Ref
| Expression |
| 1 | | elnn0 12528 |
. . 3
⊢ (𝐾 ∈ ℕ0
↔ (𝐾 ∈ ℕ
∨ 𝐾 =
0)) |
| 2 | | simp1 1137 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈
ℕ) |
| 3 | 2 | nnzd 12640 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈
ℤ) |
| 4 | | simp2 1138 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈
ℤ) |
| 5 | 3, 4 | zmulcld 12728 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ) |
| 6 | | simp3 1139 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℤ) |
| 7 | 3, 6 | zmulcld 12728 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ) |
| 8 | 5, 7 | gcdcld 16545 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈
ℕ0) |
| 9 | 2 | nnnn0d 12587 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈
ℕ0) |
| 10 | | gcdcl 16543 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈
ℕ0) |
| 11 | 10 | 3adant1 1131 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈
ℕ0) |
| 12 | 9, 11 | nn0mulcld 12592 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∈
ℕ0) |
| 13 | 8 | nn0cnd 12589 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℂ) |
| 14 | 2 | nncnd 12282 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈
ℂ) |
| 15 | 2 | nnne0d 12316 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ≠ 0) |
| 16 | 13, 14, 15 | divcan2d 12045 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))) |
| 17 | | gcddvds 16540 |
. . . . . . . . . . . . 13
⊢ (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀) ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁))) |
| 18 | 5, 7, 17 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀) ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁))) |
| 19 | 18 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀)) |
| 20 | 16, 19 | eqbrtrd 5165 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀)) |
| 21 | | dvdsmul1 16315 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑀)) |
| 22 | 3, 4, 21 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑀)) |
| 23 | | dvdsmul1 16315 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑁)) |
| 24 | 3, 6, 23 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑁)) |
| 25 | | dvdsgcd 16581 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝐾 ∥ (𝐾 · 𝑀) ∧ 𝐾 ∥ (𝐾 · 𝑁)) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) |
| 26 | 3, 5, 7, 25 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝐾 · 𝑀) ∧ 𝐾 ∥ (𝐾 · 𝑁)) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) |
| 27 | 22, 24, 26 | mp2and 699 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))) |
| 28 | 8 | nn0zd 12639 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℤ) |
| 29 | | dvdsval2 16293 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℤ) → (𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ)) |
| 30 | 3, 15, 28, 29 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ)) |
| 31 | 27, 30 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ) |
| 32 | | dvdscmulr 16322 |
. . . . . . . . . . 11
⊢
(((((𝐾 ·
𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀)) |
| 33 | 31, 4, 3, 15, 32 | syl112anc 1376 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀)) |
| 34 | 20, 33 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀) |
| 35 | 18 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁)) |
| 36 | 16, 35 | eqbrtrd 5165 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁)) |
| 37 | | dvdscmulr 16322 |
. . . . . . . . . . 11
⊢
(((((𝐾 ·
𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁)) |
| 38 | 31, 6, 3, 15, 37 | syl112anc 1376 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁)) |
| 39 | 36, 38 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁) |
| 40 | | dvdsgcd 16581 |
. . . . . . . . . 10
⊢
(((((𝐾 ·
𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀 ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁))) |
| 41 | 31, 4, 6, 40 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀 ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁))) |
| 42 | 34, 39, 41 | mp2and 699 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁)) |
| 43 | 11 | nn0zd 12639 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ) |
| 44 | | dvdscmul 16320 |
. . . . . . . . 9
⊢
(((((𝐾 ·
𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ (𝑀 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁)))) |
| 45 | 31, 43, 3, 44 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁)))) |
| 46 | 42, 45 | mpd 15 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁))) |
| 47 | 16, 46 | eqbrtrrd 5167 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · (𝑀 gcd 𝑁))) |
| 48 | | gcddvds 16540 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
| 49 | 48 | 3adant1 1131 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
| 50 | 49 | simpld 494 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀) |
| 51 | | dvdscmul 16320 |
. . . . . . . . 9
⊢ (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀))) |
| 52 | 43, 4, 3, 51 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀))) |
| 53 | 50, 52 | mpd 15 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀)) |
| 54 | 49 | simprd 495 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑁) |
| 55 | | dvdscmul 16320 |
. . . . . . . . 9
⊢ (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁))) |
| 56 | 43, 6, 3, 55 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁))) |
| 57 | 54, 56 | mpd 15 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)) |
| 58 | 12 | nn0zd 12639 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∈ ℤ) |
| 59 | | dvdsgcd 16581 |
. . . . . . . 8
⊢ (((𝐾 · (𝑀 gcd 𝑁)) ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → (((𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) |
| 60 | 58, 5, 7, 59 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) |
| 61 | 53, 57, 60 | mp2and 699 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))) |
| 62 | | dvdseq 16351 |
. . . . . 6
⊢
(((((𝐾 ·
𝑀) gcd (𝐾 · 𝑁)) ∈ ℕ0 ∧ (𝐾 · (𝑀 gcd 𝑁)) ∈ ℕ0) ∧
(((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · (𝑀 gcd 𝑁)) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))) |
| 63 | 8, 12, 47, 61, 62 | syl22anc 839 |
. . . . 5
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))) |
| 64 | 63 | 3expib 1123 |
. . . 4
⊢ (𝐾 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))) |
| 65 | | gcd0val 16534 |
. . . . . . 7
⊢ (0 gcd 0)
= 0 |
| 66 | 10 | 3adant1 1131 |
. . . . . . . . 9
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈
ℕ0) |
| 67 | 66 | nn0cnd 12589 |
. . . . . . . 8
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ) |
| 68 | 67 | mul02d 11459 |
. . . . . . 7
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · (𝑀 gcd 𝑁)) = 0) |
| 69 | 65, 68 | eqtr4id 2796 |
. . . . . 6
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 0) = (0
· (𝑀 gcd 𝑁))) |
| 70 | | simp1 1137 |
. . . . . . . . 9
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 = 0) |
| 71 | 70 | oveq1d 7446 |
. . . . . . . 8
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) = (0 · 𝑀)) |
| 72 | | zcn 12618 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
| 73 | 72 | 3ad2ant2 1135 |
. . . . . . . . 9
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 74 | 73 | mul02d 11459 |
. . . . . . . 8
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑀) = 0) |
| 75 | 71, 74 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) = 0) |
| 76 | 70 | oveq1d 7446 |
. . . . . . . 8
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) = (0 · 𝑁)) |
| 77 | | zcn 12618 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 78 | 77 | 3ad2ant3 1136 |
. . . . . . . . 9
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 79 | 78 | mul02d 11459 |
. . . . . . . 8
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0) |
| 80 | 76, 79 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) = 0) |
| 81 | 75, 80 | oveq12d 7449 |
. . . . . 6
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (0 gcd 0)) |
| 82 | 70 | oveq1d 7446 |
. . . . . 6
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁))) |
| 83 | 69, 81, 82 | 3eqtr4d 2787 |
. . . . 5
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))) |
| 84 | 83 | 3expib 1123 |
. . . 4
⊢ (𝐾 = 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))) |
| 85 | 64, 84 | jaoi 858 |
. . 3
⊢ ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))) |
| 86 | 1, 85 | sylbi 217 |
. 2
⊢ (𝐾 ∈ ℕ0
→ ((𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))) |
| 87 | 86 | 3impib 1117 |
1
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))) |