MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgcd Structured version   Visualization version   GIF version

Theorem mulgcd 16525
Description: Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
mulgcd ((𝐾 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))

Proof of Theorem mulgcd
StepHypRef Expression
1 elnn0 12451 . . 3 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
2 simp1 1136 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℕ)
32nnzd 12563 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
4 simp2 1137 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
53, 4zmulcld 12651 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
6 simp3 1138 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
73, 6zmulcld 12651 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
85, 7gcdcld 16485 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℕ0)
92nnnn0d 12510 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℕ0)
10 gcdcl 16483 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
11103adant1 1130 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
129, 11nn0mulcld 12515 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∈ ℕ0)
138nn0cnd 12512 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℂ)
142nncnd 12209 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℂ)
152nnne0d 12243 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ≠ 0)
1613, 14, 15divcan2d 11967 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
17 gcddvds 16480 . . . . . . . . . . . . 13 (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀) ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁)))
185, 7, 17syl2anc 584 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀) ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁)))
1918simpld 494 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀))
2016, 19eqbrtrd 5132 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀))
21 dvdsmul1 16254 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑀))
223, 4, 21syl2anc 584 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑀))
23 dvdsmul1 16254 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑁))
243, 6, 23syl2anc 584 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑁))
25 dvdsgcd 16521 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝐾 ∥ (𝐾 · 𝑀) ∧ 𝐾 ∥ (𝐾 · 𝑁)) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))))
263, 5, 7, 25syl3anc 1373 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝐾 · 𝑀) ∧ 𝐾 ∥ (𝐾 · 𝑁)) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))))
2722, 24, 26mp2and 699 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
288nn0zd 12562 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℤ)
29 dvdsval2 16232 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℤ) → (𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ))
303, 15, 28, 29syl3anc 1373 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ))
3127, 30mpbid 232 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ)
32 dvdscmulr 16261 . . . . . . . . . . 11 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀))
3331, 4, 3, 15, 32syl112anc 1376 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀))
3420, 33mpbid 232 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀)
3518simprd 495 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁))
3616, 35eqbrtrd 5132 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁))
37 dvdscmulr 16261 . . . . . . . . . . 11 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁))
3831, 6, 3, 15, 37syl112anc 1376 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁))
3936, 38mpbid 232 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁)
40 dvdsgcd 16521 . . . . . . . . . 10 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀 ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁)))
4131, 4, 6, 40syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀 ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁)))
4234, 39, 41mp2and 699 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁))
4311nn0zd 12562 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ)
44 dvdscmul 16259 . . . . . . . . 9 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ (𝑀 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁))))
4531, 43, 3, 44syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁))))
4642, 45mpd 15 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁)))
4716, 46eqbrtrrd 5134 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · (𝑀 gcd 𝑁)))
48 gcddvds 16480 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
49483adant1 1130 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
5049simpld 494 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀)
51 dvdscmul 16259 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀)))
5243, 4, 3, 51syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀)))
5350, 52mpd 15 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀))
5449simprd 495 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑁)
55 dvdscmul 16259 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)))
5643, 6, 3, 55syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)))
5754, 56mpd 15 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁))
5812nn0zd 12562 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∈ ℤ)
59 dvdsgcd 16521 . . . . . . . 8 (((𝐾 · (𝑀 gcd 𝑁)) ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → (((𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))))
6058, 5, 7, 59syl3anc 1373 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))))
6153, 57, 60mp2and 699 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
62 dvdseq 16291 . . . . . 6 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℕ0 ∧ (𝐾 · (𝑀 gcd 𝑁)) ∈ ℕ0) ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · (𝑀 gcd 𝑁)) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
638, 12, 47, 61, 62syl22anc 838 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
64633expib 1122 . . . 4 (𝐾 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))))
65 gcd0val 16474 . . . . . . 7 (0 gcd 0) = 0
66103adant1 1130 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
6766nn0cnd 12512 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ)
6867mul02d 11379 . . . . . . 7 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · (𝑀 gcd 𝑁)) = 0)
6965, 68eqtr4id 2784 . . . . . 6 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 0) = (0 · (𝑀 gcd 𝑁)))
70 simp1 1136 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 = 0)
7170oveq1d 7405 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) = (0 · 𝑀))
72 zcn 12541 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
73723ad2ant2 1134 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
7473mul02d 11379 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑀) = 0)
7571, 74eqtrd 2765 . . . . . . 7 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) = 0)
7670oveq1d 7405 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) = (0 · 𝑁))
77 zcn 12541 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
78773ad2ant3 1135 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
7978mul02d 11379 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0)
8076, 79eqtrd 2765 . . . . . . 7 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) = 0)
8175, 80oveq12d 7408 . . . . . 6 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (0 gcd 0))
8270oveq1d 7405 . . . . . 6 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁)))
8369, 81, 823eqtr4d 2775 . . . . 5 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
84833expib 1122 . . . 4 (𝐾 = 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))))
8564, 84jaoi 857 . . 3 ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))))
861, 85sylbi 217 . 2 (𝐾 ∈ ℕ0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))))
87863impib 1116 1 ((𝐾 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  cc 11073  0cc0 11075   · cmul 11080   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cdvds 16229   gcd cgcd 16471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472
This theorem is referenced by:  absmulgcd  16526  mulgcdr  16527  mulgcddvds  16632  qredeu  16635  coprimeprodsq  16786  pythagtriplem4  16797  odadd2  19786  2sqlem8  27344
  Copyright terms: Public domain W3C validator