![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmplp | Structured version Visualization version GIF version |
Description: Domain of addition on positive reals. (Contributed by NM, 18-Nov-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmplp | ⊢ dom +P = (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plp 11026 | . 2 ⊢ +P = (𝑥 ∈ P, 𝑦 ∈ P ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢 +Q 𝑣)}) | |
2 | addclnq 10988 | . 2 ⊢ ((𝑢 ∈ Q ∧ 𝑣 ∈ Q) → (𝑢 +Q 𝑣) ∈ Q) | |
3 | 1, 2 | genpdm 11045 | 1 ⊢ dom +P = (P × P) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 × cxp 5680 dom cdm 5682 +Q cplq 10898 Pcnp 10902 +P cpp 10904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-omul 8501 df-er 8734 df-ni 10915 df-pli 10916 df-mi 10917 df-lti 10918 df-plpq 10951 df-enq 10954 df-nq 10955 df-erq 10956 df-plq 10957 df-1nq 10959 df-np 11024 df-plp 11026 |
This theorem is referenced by: addcompr 11064 addasspr 11065 distrpr 11071 ltaddpr2 11078 ltapr 11088 addcanpr 11089 ltsrpr 11120 ltsosr 11137 mappsrpr 11151 |
Copyright terms: Public domain | W3C validator |