| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmp | Structured version Visualization version GIF version | ||
| Description: Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmmp | ⊢ dom ·P = (P × P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mp 10937 | . 2 ⊢ ·P = (𝑥 ∈ P, 𝑦 ∈ P ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢 ·Q 𝑣)}) | |
| 2 | mulclnq 10900 | . 2 ⊢ ((𝑢 ∈ Q ∧ 𝑣 ∈ Q) → (𝑢 ·Q 𝑣) ∈ Q) | |
| 3 | 1, 2 | genpdm 10955 | 1 ⊢ dom ·P = (P × P) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5636 dom cdm 5638 ·Q cmq 10809 Pcnp 10812 ·P cmp 10815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ni 10825 df-mi 10827 df-lti 10828 df-mpq 10862 df-enq 10864 df-nq 10865 df-erq 10866 df-mq 10868 df-1nq 10869 df-np 10934 df-mp 10937 |
| This theorem is referenced by: mulcompr 10976 mulasspr 10977 distrpr 10981 |
| Copyright terms: Public domain | W3C validator |