| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmp | Structured version Visualization version GIF version | ||
| Description: Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmmp | ⊢ dom ·P = (P × P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mp 10878 | . 2 ⊢ ·P = (𝑥 ∈ P, 𝑦 ∈ P ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢 ·Q 𝑣)}) | |
| 2 | mulclnq 10841 | . 2 ⊢ ((𝑢 ∈ Q ∧ 𝑣 ∈ Q) → (𝑢 ·Q 𝑣) ∈ Q) | |
| 3 | 1, 2 | genpdm 10896 | 1 ⊢ dom ·P = (P × P) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5617 dom cdm 5619 ·Q cmq 10750 Pcnp 10753 ·P cmp 10756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-omul 8393 df-er 8625 df-ni 10766 df-mi 10768 df-lti 10769 df-mpq 10803 df-enq 10805 df-nq 10806 df-erq 10807 df-mq 10809 df-1nq 10810 df-np 10875 df-mp 10878 |
| This theorem is referenced by: mulcompr 10917 mulasspr 10918 distrpr 10922 |
| Copyright terms: Public domain | W3C validator |