![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmp | Structured version Visualization version GIF version |
Description: Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmmp | ⊢ dom ·P = (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mp 10141 | . 2 ⊢ ·P = (𝑥 ∈ P, 𝑦 ∈ P ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢 ·Q 𝑣)}) | |
2 | mulclnq 10104 | . 2 ⊢ ((𝑢 ∈ Q ∧ 𝑣 ∈ Q) → (𝑢 ·Q 𝑣) ∈ Q) | |
3 | 1, 2 | genpdm 10159 | 1 ⊢ dom ·P = (P × P) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 × cxp 5353 dom cdm 5355 ·Q cmq 10013 Pcnp 10016 ·P cmp 10019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-omul 7848 df-er 8026 df-ni 10029 df-mi 10031 df-lti 10032 df-mpq 10066 df-enq 10068 df-nq 10069 df-erq 10070 df-mq 10072 df-1nq 10073 df-np 10138 df-mp 10141 |
This theorem is referenced by: mulcompr 10180 mulasspr 10181 distrpr 10185 |
Copyright terms: Public domain | W3C validator |