![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubid1 | Structured version Visualization version GIF version |
Description: Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.) |
Ref | Expression |
---|---|
grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubid.o | ⊢ 0 = (0g‘𝐺) |
grpsubid.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubid1 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
2 | grpsubid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpsubid.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
4 | 2, 3 | grpidcl 18783 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
5 | eqid 2733 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
6 | eqid 2733 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
7 | grpsubid.m | . . . 4 ⊢ − = (-g‘𝐺) | |
8 | 2, 5, 6, 7 | grpsubval 18801 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 − 0 ) = (𝑋(+g‘𝐺)((invg‘𝐺)‘ 0 ))) |
9 | 1, 4, 8 | syl2anr 598 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = (𝑋(+g‘𝐺)((invg‘𝐺)‘ 0 ))) |
10 | 3, 6 | grpinvid 18813 | . . . 4 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
11 | 10 | adantr 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((invg‘𝐺)‘ 0 ) = 0 ) |
12 | 11 | oveq2d 7374 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘ 0 )) = (𝑋(+g‘𝐺) 0 )) |
13 | 2, 5, 3 | grprid 18786 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺) 0 ) = 𝑋) |
14 | 9, 12, 13 | 3eqtrd 2777 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6497 (class class class)co 7358 Basecbs 17088 +gcplusg 17138 0gc0g 17326 Grpcgrp 18753 invgcminusg 18754 -gcsg 18755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-0g 17328 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-grp 18756 df-minusg 18757 df-sbg 18758 |
This theorem is referenced by: odmod 19333 sylow3lem1 19414 telgsums 19775 dprdfeq0 19806 chp0mat 22211 tsmsxplem1 23520 tngnm 24031 ply1divex 25517 ply1remlem 25543 qqhcn 32629 lcfrlem33 40084 |
Copyright terms: Public domain | W3C validator |