| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubid1 | Structured version Visualization version GIF version | ||
| Description: Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubid.o | ⊢ 0 = (0g‘𝐺) |
| grpsubid.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubid1 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
| 2 | grpsubid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpsubid.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | grpidcl 18948 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 5 | eqid 2735 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | eqid 2735 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 7 | grpsubid.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 8 | 2, 5, 6, 7 | grpsubval 18968 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 − 0 ) = (𝑋(+g‘𝐺)((invg‘𝐺)‘ 0 ))) |
| 9 | 1, 4, 8 | syl2anr 597 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = (𝑋(+g‘𝐺)((invg‘𝐺)‘ 0 ))) |
| 10 | 3, 6 | grpinvid 18982 | . . . 4 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 12 | 11 | oveq2d 7421 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘ 0 )) = (𝑋(+g‘𝐺) 0 )) |
| 13 | 2, 5, 3 | grprid 18951 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺) 0 ) = 𝑋) |
| 14 | 9, 12, 13 | 3eqtrd 2774 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Grpcgrp 18916 invgcminusg 18917 -gcsg 18918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 |
| This theorem is referenced by: odmod 19527 sylow3lem1 19608 telgsums 19974 dprdfeq0 20005 rngqiprngimf1lem 21255 chp0mat 22784 tsmsxplem1 24091 tngnm 24590 ply1divex 26094 r1pid2 26119 ply1remlem 26122 fracfld 33302 r1pid2OLD 33618 irredminply 33750 qqhcn 34022 lcfrlem33 41594 |
| Copyright terms: Public domain | W3C validator |