MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubid1 Structured version   Visualization version   GIF version

Theorem grpsubid1 18957
Description: Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
grpsubid.b 𝐵 = (Base‘𝐺)
grpsubid.o 0 = (0g𝐺)
grpsubid.m = (-g𝐺)
Assertion
Ref Expression
grpsubid1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)

Proof of Theorem grpsubid1
StepHypRef Expression
1 id 22 . . 3 (𝑋𝐵𝑋𝐵)
2 grpsubid.b . . . 4 𝐵 = (Base‘𝐺)
3 grpsubid.o . . . 4 0 = (0g𝐺)
42, 3grpidcl 18897 . . 3 (𝐺 ∈ Grp → 0𝐵)
5 eqid 2729 . . . 4 (+g𝐺) = (+g𝐺)
6 eqid 2729 . . . 4 (invg𝐺) = (invg𝐺)
7 grpsubid.m . . . 4 = (-g𝐺)
82, 5, 6, 7grpsubval 18917 . . 3 ((𝑋𝐵0𝐵) → (𝑋 0 ) = (𝑋(+g𝐺)((invg𝐺)‘ 0 )))
91, 4, 8syl2anr 597 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 0 ) = (𝑋(+g𝐺)((invg𝐺)‘ 0 )))
103, 6grpinvid 18931 . . . 4 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
1110adantr 480 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘ 0 ) = 0 )
1211oveq2d 7403 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)((invg𝐺)‘ 0 )) = (𝑋(+g𝐺) 0 ))
132, 5, 3grprid 18900 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺) 0 ) = 𝑋)
149, 12, 133eqtrd 2768 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866  -gcsg 18867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870
This theorem is referenced by:  odmod  19476  sylow3lem1  19557  telgsums  19923  dprdfeq0  19954  rngqiprngimf1lem  21204  chp0mat  22733  tsmsxplem1  24040  tngnm  24539  ply1divex  26042  r1pid2  26067  ply1remlem  26070  conjga  33127  fracfld  33258  r1pid2OLD  33574  irredminply  33706  qqhcn  33981  lcfrlem33  41569
  Copyright terms: Public domain W3C validator