| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubid1 | Structured version Visualization version GIF version | ||
| Description: Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubid.o | ⊢ 0 = (0g‘𝐺) |
| grpsubid.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubid1 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
| 2 | grpsubid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpsubid.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | grpidcl 18875 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 5 | eqid 2731 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | eqid 2731 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 7 | grpsubid.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 8 | 2, 5, 6, 7 | grpsubval 18895 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 − 0 ) = (𝑋(+g‘𝐺)((invg‘𝐺)‘ 0 ))) |
| 9 | 1, 4, 8 | syl2anr 597 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = (𝑋(+g‘𝐺)((invg‘𝐺)‘ 0 ))) |
| 10 | 3, 6 | grpinvid 18909 | . . . 4 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 12 | 11 | oveq2d 7362 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘ 0 )) = (𝑋(+g‘𝐺) 0 )) |
| 13 | 2, 5, 3 | grprid 18878 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺) 0 ) = 𝑋) |
| 14 | 9, 12, 13 | 3eqtrd 2770 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 0gc0g 17340 Grpcgrp 18843 invgcminusg 18844 -gcsg 18845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 |
| This theorem is referenced by: odmod 19456 sylow3lem1 19537 telgsums 19903 dprdfeq0 19934 rngqiprngimf1lem 21229 chp0mat 22759 tsmsxplem1 24066 tngnm 24564 ply1divex 26067 r1pid2 26092 ply1remlem 26095 conjga 33134 fracfld 33269 r1pid2OLD 33564 irredminply 33724 qqhcn 33999 lcfrlem33 41613 |
| Copyright terms: Public domain | W3C validator |