| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubid1 | Structured version Visualization version GIF version | ||
| Description: Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubid.o | ⊢ 0 = (0g‘𝐺) |
| grpsubid.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubid1 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
| 2 | grpsubid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpsubid.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | grpidcl 18897 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 5 | eqid 2729 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | eqid 2729 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 7 | grpsubid.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 8 | 2, 5, 6, 7 | grpsubval 18917 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 − 0 ) = (𝑋(+g‘𝐺)((invg‘𝐺)‘ 0 ))) |
| 9 | 1, 4, 8 | syl2anr 597 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = (𝑋(+g‘𝐺)((invg‘𝐺)‘ 0 ))) |
| 10 | 3, 6 | grpinvid 18931 | . . . 4 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 12 | 11 | oveq2d 7403 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘ 0 )) = (𝑋(+g‘𝐺) 0 )) |
| 13 | 2, 5, 3 | grprid 18900 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺) 0 ) = 𝑋) |
| 14 | 9, 12, 13 | 3eqtrd 2768 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Grpcgrp 18865 invgcminusg 18866 -gcsg 18867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 |
| This theorem is referenced by: odmod 19476 sylow3lem1 19557 telgsums 19923 dprdfeq0 19954 rngqiprngimf1lem 21204 chp0mat 22733 tsmsxplem1 24040 tngnm 24539 ply1divex 26042 r1pid2 26067 ply1remlem 26070 conjga 33127 fracfld 33258 r1pid2OLD 33574 irredminply 33706 qqhcn 33981 lcfrlem33 41569 |
| Copyright terms: Public domain | W3C validator |