Proof of Theorem odmod
| Step | Hyp | Ref
| Expression |
| 1 | | simpl3 1193 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈ ℤ) |
| 2 | 1 | zred 12724 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈ ℝ) |
| 3 | | simpr 484 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈ ℕ) |
| 4 | 3 | nnrpd 13076 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈
ℝ+) |
| 5 | | modval 13912 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ (𝑂‘𝐴) ∈ ℝ+) → (𝑁 mod (𝑂‘𝐴)) = (𝑁 − ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))))) |
| 6 | 2, 4, 5 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 mod (𝑂‘𝐴)) = (𝑁 − ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))))) |
| 7 | 6 | oveq1d 7447 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 − ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴))))) · 𝐴)) |
| 8 | | simpl1 1191 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝐺 ∈ Grp) |
| 9 | 3 | nnzd 12642 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈ ℤ) |
| 10 | 2, 3 | nndivred 12321 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 / (𝑂‘𝐴)) ∈ ℝ) |
| 11 | 10 | flcld 13839 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) →
(⌊‘(𝑁 / (𝑂‘𝐴))) ∈ ℤ) |
| 12 | 9, 11 | zmulcld 12730 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) ∈ ℤ) |
| 13 | | simpl2 1192 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝐴 ∈ 𝑋) |
| 14 | | odcl.1 |
. . . 4
⊢ 𝑋 = (Base‘𝐺) |
| 15 | | odid.3 |
. . . 4
⊢ · =
(.g‘𝐺) |
| 16 | | eqid 2736 |
. . . 4
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 17 | 14, 15, 16 | mulgsubdir 19133 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑁 − ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴))))) · 𝐴) = ((𝑁 · 𝐴)(-g‘𝐺)(((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) · 𝐴))) |
| 18 | 8, 1, 12, 13, 17 | syl13anc 1373 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 − ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴))))) · 𝐴) = ((𝑁 · 𝐴)(-g‘𝐺)(((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) · 𝐴))) |
| 19 | | nncn 12275 |
. . . . . . . 8
⊢ ((𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) ∈ ℂ) |
| 20 | | zcn 12620 |
. . . . . . . 8
⊢
((⌊‘(𝑁 /
(𝑂‘𝐴))) ∈ ℤ →
(⌊‘(𝑁 / (𝑂‘𝐴))) ∈ ℂ) |
| 21 | | mulcom 11242 |
. . . . . . . 8
⊢ (((𝑂‘𝐴) ∈ ℂ ∧ (⌊‘(𝑁 / (𝑂‘𝐴))) ∈ ℂ) → ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) = ((⌊‘(𝑁 / (𝑂‘𝐴))) · (𝑂‘𝐴))) |
| 22 | 19, 20, 21 | syl2an 596 |
. . . . . . 7
⊢ (((𝑂‘𝐴) ∈ ℕ ∧ (⌊‘(𝑁 / (𝑂‘𝐴))) ∈ ℤ) → ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) = ((⌊‘(𝑁 / (𝑂‘𝐴))) · (𝑂‘𝐴))) |
| 23 | 3, 11, 22 | syl2anc 584 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) = ((⌊‘(𝑁 / (𝑂‘𝐴))) · (𝑂‘𝐴))) |
| 24 | 23 | oveq1d 7447 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) · 𝐴) = (((⌊‘(𝑁 / (𝑂‘𝐴))) · (𝑂‘𝐴)) · 𝐴)) |
| 25 | 14, 15 | mulgass 19130 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧
((⌊‘(𝑁 / (𝑂‘𝐴))) ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → (((⌊‘(𝑁 / (𝑂‘𝐴))) · (𝑂‘𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂‘𝐴))) · ((𝑂‘𝐴) · 𝐴))) |
| 26 | 8, 11, 9, 13, 25 | syl13anc 1373 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) →
(((⌊‘(𝑁 /
(𝑂‘𝐴))) · (𝑂‘𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂‘𝐴))) · ((𝑂‘𝐴) · 𝐴))) |
| 27 | | odcl.2 |
. . . . . . . . 9
⊢ 𝑂 = (od‘𝐺) |
| 28 | | odid.4 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
| 29 | 14, 27, 15, 28 | odid 19557 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = 0 ) |
| 30 | 13, 29 | syl 17 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) · 𝐴) = 0 ) |
| 31 | 30 | oveq2d 7448 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) →
((⌊‘(𝑁 / (𝑂‘𝐴))) · ((𝑂‘𝐴) · 𝐴)) = ((⌊‘(𝑁 / (𝑂‘𝐴))) · 0 )) |
| 32 | 14, 15, 28 | mulgz 19121 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧
(⌊‘(𝑁 / (𝑂‘𝐴))) ∈ ℤ) →
((⌊‘(𝑁 / (𝑂‘𝐴))) · 0 ) = 0 ) |
| 33 | 8, 11, 32 | syl2anc 584 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) →
((⌊‘(𝑁 / (𝑂‘𝐴))) · 0 ) = 0 ) |
| 34 | 31, 33 | eqtrd 2776 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) →
((⌊‘(𝑁 / (𝑂‘𝐴))) · ((𝑂‘𝐴) · 𝐴)) = 0 ) |
| 35 | 24, 26, 34 | 3eqtrd 2780 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) · 𝐴) = 0 ) |
| 36 | 35 | oveq2d 7448 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g‘𝐺)(((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) · 𝐴)) = ((𝑁 · 𝐴)(-g‘𝐺) 0 )) |
| 37 | 14, 15 | mulgcl 19110 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑁 · 𝐴) ∈ 𝑋) |
| 38 | 8, 1, 13, 37 | syl3anc 1372 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 · 𝐴) ∈ 𝑋) |
| 39 | 14, 28, 16 | grpsubid1 19044 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑁 · 𝐴) ∈ 𝑋) → ((𝑁 · 𝐴)(-g‘𝐺) 0 ) = (𝑁 · 𝐴)) |
| 40 | 8, 38, 39 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g‘𝐺) 0 ) = (𝑁 · 𝐴)) |
| 41 | 36, 40 | eqtrd 2776 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g‘𝐺)(((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) · 𝐴)) = (𝑁 · 𝐴)) |
| 42 | 7, 18, 41 | 3eqtrd 2780 |
1
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (𝑁 · 𝐴)) |