Proof of Theorem odmod
Step | Hyp | Ref
| Expression |
1 | | simpl3 1191 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈ ℤ) |
2 | 1 | zred 12355 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈ ℝ) |
3 | | simpr 484 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈ ℕ) |
4 | 3 | nnrpd 12699 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈
ℝ+) |
5 | | modval 13519 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ (𝑂‘𝐴) ∈ ℝ+) → (𝑁 mod (𝑂‘𝐴)) = (𝑁 − ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))))) |
6 | 2, 4, 5 | syl2anc 583 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 mod (𝑂‘𝐴)) = (𝑁 − ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))))) |
7 | 6 | oveq1d 7270 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 − ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴))))) · 𝐴)) |
8 | | simpl1 1189 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝐺 ∈ Grp) |
9 | 3 | nnzd 12354 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈ ℤ) |
10 | 2, 3 | nndivred 11957 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 / (𝑂‘𝐴)) ∈ ℝ) |
11 | 10 | flcld 13446 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) →
(⌊‘(𝑁 / (𝑂‘𝐴))) ∈ ℤ) |
12 | 9, 11 | zmulcld 12361 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) ∈ ℤ) |
13 | | simpl2 1190 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝐴 ∈ 𝑋) |
14 | | odcl.1 |
. . . 4
⊢ 𝑋 = (Base‘𝐺) |
15 | | odid.3 |
. . . 4
⊢ · =
(.g‘𝐺) |
16 | | eqid 2738 |
. . . 4
⊢
(-g‘𝐺) = (-g‘𝐺) |
17 | 14, 15, 16 | mulgsubdir 18658 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑁 − ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴))))) · 𝐴) = ((𝑁 · 𝐴)(-g‘𝐺)(((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) · 𝐴))) |
18 | 8, 1, 12, 13, 17 | syl13anc 1370 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 − ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴))))) · 𝐴) = ((𝑁 · 𝐴)(-g‘𝐺)(((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) · 𝐴))) |
19 | | nncn 11911 |
. . . . . . . 8
⊢ ((𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) ∈ ℂ) |
20 | | zcn 12254 |
. . . . . . . 8
⊢
((⌊‘(𝑁 /
(𝑂‘𝐴))) ∈ ℤ →
(⌊‘(𝑁 / (𝑂‘𝐴))) ∈ ℂ) |
21 | | mulcom 10888 |
. . . . . . . 8
⊢ (((𝑂‘𝐴) ∈ ℂ ∧ (⌊‘(𝑁 / (𝑂‘𝐴))) ∈ ℂ) → ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) = ((⌊‘(𝑁 / (𝑂‘𝐴))) · (𝑂‘𝐴))) |
22 | 19, 20, 21 | syl2an 595 |
. . . . . . 7
⊢ (((𝑂‘𝐴) ∈ ℕ ∧ (⌊‘(𝑁 / (𝑂‘𝐴))) ∈ ℤ) → ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) = ((⌊‘(𝑁 / (𝑂‘𝐴))) · (𝑂‘𝐴))) |
23 | 3, 11, 22 | syl2anc 583 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) = ((⌊‘(𝑁 / (𝑂‘𝐴))) · (𝑂‘𝐴))) |
24 | 23 | oveq1d 7270 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) · 𝐴) = (((⌊‘(𝑁 / (𝑂‘𝐴))) · (𝑂‘𝐴)) · 𝐴)) |
25 | 14, 15 | mulgass 18655 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧
((⌊‘(𝑁 / (𝑂‘𝐴))) ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → (((⌊‘(𝑁 / (𝑂‘𝐴))) · (𝑂‘𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂‘𝐴))) · ((𝑂‘𝐴) · 𝐴))) |
26 | 8, 11, 9, 13, 25 | syl13anc 1370 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) →
(((⌊‘(𝑁 /
(𝑂‘𝐴))) · (𝑂‘𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂‘𝐴))) · ((𝑂‘𝐴) · 𝐴))) |
27 | | odcl.2 |
. . . . . . . . 9
⊢ 𝑂 = (od‘𝐺) |
28 | | odid.4 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
29 | 14, 27, 15, 28 | odid 19061 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = 0 ) |
30 | 13, 29 | syl 17 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) · 𝐴) = 0 ) |
31 | 30 | oveq2d 7271 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) →
((⌊‘(𝑁 / (𝑂‘𝐴))) · ((𝑂‘𝐴) · 𝐴)) = ((⌊‘(𝑁 / (𝑂‘𝐴))) · 0 )) |
32 | 14, 15, 28 | mulgz 18646 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧
(⌊‘(𝑁 / (𝑂‘𝐴))) ∈ ℤ) →
((⌊‘(𝑁 / (𝑂‘𝐴))) · 0 ) = 0 ) |
33 | 8, 11, 32 | syl2anc 583 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) →
((⌊‘(𝑁 / (𝑂‘𝐴))) · 0 ) = 0 ) |
34 | 31, 33 | eqtrd 2778 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) →
((⌊‘(𝑁 / (𝑂‘𝐴))) · ((𝑂‘𝐴) · 𝐴)) = 0 ) |
35 | 24, 26, 34 | 3eqtrd 2782 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) · 𝐴) = 0 ) |
36 | 35 | oveq2d 7271 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g‘𝐺)(((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) · 𝐴)) = ((𝑁 · 𝐴)(-g‘𝐺) 0 )) |
37 | 14, 15 | mulgcl 18636 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑁 · 𝐴) ∈ 𝑋) |
38 | 8, 1, 13, 37 | syl3anc 1369 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 · 𝐴) ∈ 𝑋) |
39 | 14, 28, 16 | grpsubid1 18575 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑁 · 𝐴) ∈ 𝑋) → ((𝑁 · 𝐴)(-g‘𝐺) 0 ) = (𝑁 · 𝐴)) |
40 | 8, 38, 39 | syl2anc 583 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g‘𝐺) 0 ) = (𝑁 · 𝐴)) |
41 | 36, 40 | eqtrd 2778 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g‘𝐺)(((𝑂‘𝐴) · (⌊‘(𝑁 / (𝑂‘𝐴)))) · 𝐴)) = (𝑁 · 𝐴)) |
42 | 7, 18, 41 | 3eqtrd 2782 |
1
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (𝑁 · 𝐴)) |