MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmod Structured version   Visualization version   GIF version

Theorem odmod 19250
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 6-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odmod (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))

Proof of Theorem odmod
StepHypRef Expression
1 simpl3 1192 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
21zred 12527 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
3 simpr 485 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
43nnrpd 12871 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
5 modval 13692 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
62, 4, 5syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
76oveq1d 7352 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = ((𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))) · 𝐴))
8 simpl1 1190 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Grp)
93nnzd 12526 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℤ)
102, 3nndivred 12128 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 / (𝑂𝐴)) ∈ ℝ)
1110flcld 13619 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ)
129, 11zmulcld 12533 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℤ)
13 simpl2 1191 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
14 odcl.1 . . . 4 𝑋 = (Base‘𝐺)
15 odid.3 . . . 4 · = (.g𝐺)
16 eqid 2736 . . . 4 (-g𝐺) = (-g𝐺)
1714, 15, 16mulgsubdir 18839 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℤ ∧ 𝐴𝑋)) → ((𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))) · 𝐴) = ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)))
188, 1, 12, 13, 17syl13anc 1371 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))) · 𝐴) = ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)))
19 nncn 12082 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℂ)
20 zcn 12425 . . . . . . . 8 ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ)
21 mulcom 11058 . . . . . . . 8 (((𝑂𝐴) ∈ ℂ ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
2219, 20, 21syl2an 596 . . . . . . 7 (((𝑂𝐴) ∈ ℕ ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
233, 11, 22syl2anc 584 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
2423oveq1d 7352 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴))
2514, 15mulgass 18836 . . . . . 6 ((𝐺 ∈ Grp ∧ ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ ∧ 𝐴𝑋)) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
268, 11, 9, 13, 25syl13anc 1371 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
27 odcl.2 . . . . . . . . 9 𝑂 = (od‘𝐺)
28 odid.4 . . . . . . . . 9 0 = (0g𝐺)
2914, 27, 15, 28odid 19242 . . . . . . . 8 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
3013, 29syl 17 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · 𝐴) = 0 )
3130oveq2d 7353 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ))
3214, 15, 28mulgz 18827 . . . . . . 7 ((𝐺 ∈ Grp ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
338, 11, 32syl2anc 584 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
3431, 33eqtrd 2776 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = 0 )
3524, 26, 343eqtrd 2780 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = 0 )
3635oveq2d 7353 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)) = ((𝑁 · 𝐴)(-g𝐺) 0 ))
3714, 15mulgcl 18817 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
388, 1, 13, 37syl3anc 1370 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 · 𝐴) ∈ 𝑋)
3914, 28, 16grpsubid1 18756 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 · 𝐴) ∈ 𝑋) → ((𝑁 · 𝐴)(-g𝐺) 0 ) = (𝑁 · 𝐴))
408, 38, 39syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g𝐺) 0 ) = (𝑁 · 𝐴))
4136, 40eqtrd 2776 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)) = (𝑁 · 𝐴))
427, 18, 413eqtrd 2780 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  cfv 6479  (class class class)co 7337  cc 10970  cr 10971   · cmul 10977  cmin 11306   / cdiv 11733  cn 12074  cz 12420  +crp 12831  cfl 13611   mod cmo 13690  Basecbs 17009  0gc0g 17247  Grpcgrp 18673  -gcsg 18675  .gcmg 18796  odcod 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-sup 9299  df-inf 9300  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-n0 12335  df-z 12421  df-uz 12684  df-rp 12832  df-fz 13341  df-fl 13613  df-mod 13691  df-seq 13823  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-grp 18676  df-minusg 18677  df-sbg 18678  df-mulg 18797  df-od 19232
This theorem is referenced by:  oddvds  19251  odf1o2  19274
  Copyright terms: Public domain W3C validator