MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmod Structured version   Visualization version   GIF version

Theorem odmod 18666
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 6-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odmod (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))

Proof of Theorem odmod
StepHypRef Expression
1 simpl3 1188 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
21zred 12079 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
3 simpr 487 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
43nnrpd 12421 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
5 modval 13231 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
62, 4, 5syl2anc 586 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
76oveq1d 7163 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = ((𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))) · 𝐴))
8 simpl1 1186 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Grp)
93nnzd 12078 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℤ)
102, 3nndivred 11683 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 / (𝑂𝐴)) ∈ ℝ)
1110flcld 13160 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ)
129, 11zmulcld 12085 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℤ)
13 simpl2 1187 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
14 odcl.1 . . . 4 𝑋 = (Base‘𝐺)
15 odid.3 . . . 4 · = (.g𝐺)
16 eqid 2819 . . . 4 (-g𝐺) = (-g𝐺)
1714, 15, 16mulgsubdir 18259 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℤ ∧ 𝐴𝑋)) → ((𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))) · 𝐴) = ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)))
188, 1, 12, 13, 17syl13anc 1367 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))) · 𝐴) = ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)))
19 nncn 11638 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℂ)
20 zcn 11978 . . . . . . . 8 ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ)
21 mulcom 10615 . . . . . . . 8 (((𝑂𝐴) ∈ ℂ ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
2219, 20, 21syl2an 597 . . . . . . 7 (((𝑂𝐴) ∈ ℕ ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
233, 11, 22syl2anc 586 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
2423oveq1d 7163 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴))
2514, 15mulgass 18256 . . . . . 6 ((𝐺 ∈ Grp ∧ ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ ∧ 𝐴𝑋)) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
268, 11, 9, 13, 25syl13anc 1367 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
27 odcl.2 . . . . . . . . 9 𝑂 = (od‘𝐺)
28 odid.4 . . . . . . . . 9 0 = (0g𝐺)
2914, 27, 15, 28odid 18658 . . . . . . . 8 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
3013, 29syl 17 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · 𝐴) = 0 )
3130oveq2d 7164 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ))
3214, 15, 28mulgz 18247 . . . . . . 7 ((𝐺 ∈ Grp ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℤ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
338, 11, 32syl2anc 586 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
3431, 33eqtrd 2854 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = 0 )
3524, 26, 343eqtrd 2858 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = 0 )
3635oveq2d 7164 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)) = ((𝑁 · 𝐴)(-g𝐺) 0 ))
3714, 15mulgcl 18237 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
388, 1, 13, 37syl3anc 1366 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 · 𝐴) ∈ 𝑋)
3914, 28, 16grpsubid1 18176 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 · 𝐴) ∈ 𝑋) → ((𝑁 · 𝐴)(-g𝐺) 0 ) = (𝑁 · 𝐴))
408, 38, 39syl2anc 586 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g𝐺) 0 ) = (𝑁 · 𝐴))
4136, 40eqtrd 2854 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 · 𝐴)(-g𝐺)(((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)) = (𝑁 · 𝐴))
427, 18, 413eqtrd 2858 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  cfv 6348  (class class class)co 7148  cc 10527  cr 10528   · cmul 10534  cmin 10862   / cdiv 11289  cn 11630  cz 11973  +crp 12381  cfl 13152   mod cmo 13229  Basecbs 16475  0gc0g 16705  Grpcgrp 18095  -gcsg 18097  .gcmg 18216  odcod 18644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fl 13154  df-mod 13230  df-seq 13362  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-od 18648
This theorem is referenced by:  oddvds  18667  odf1o2  18690
  Copyright terms: Public domain W3C validator