![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmat1ovscd | Structured version Visualization version GIF version |
Description: Entries of the identity polynomial matrix over a ring represented with "lifted scalars", deduction form. (Contributed by AV, 16-Nov-2019.) |
Ref | Expression |
---|---|
pmat0opsc.p | ⊢ 𝑃 = (Poly1‘𝑅) |
pmat0opsc.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
pmat0opsc.a | ⊢ 𝐴 = (algSc‘𝑃) |
pmat0opsc.z | ⊢ 0 = (0g‘𝑅) |
pmat1opsc.o | ⊢ 1 = (1r‘𝑅) |
pmat1ovscd.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
pmat1ovscd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
pmat1ovscd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
pmat1ovscd.j | ⊢ (𝜑 → 𝐽 ∈ 𝑁) |
pmat1ovscd.u | ⊢ 𝑈 = (1r‘𝐶) |
Ref | Expression |
---|---|
pmat1ovscd | ⊢ (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, (𝐴‘ 1 ), (𝐴‘ 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmat0opsc.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | pmat0opsc.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
3 | eqid 2740 | . . 3 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
4 | eqid 2740 | . . 3 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
5 | pmat1ovscd.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
6 | pmat1ovscd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | pmat1ovscd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
8 | pmat1ovscd.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑁) | |
9 | pmat1ovscd.u | . . 3 ⊢ 𝑈 = (1r‘𝐶) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | pmat1ovd 22726 | . 2 ⊢ (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, (1r‘𝑃), (0g‘𝑃))) |
11 | pmat0opsc.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
12 | pmat1opsc.o | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
13 | 1, 11, 12, 4 | ply1scl1 22319 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐴‘ 1 ) = (1r‘𝑃)) |
14 | 6, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴‘ 1 ) = (1r‘𝑃)) |
15 | 14 | eqcomd 2746 | . . 3 ⊢ (𝜑 → (1r‘𝑃) = (𝐴‘ 1 )) |
16 | pmat0opsc.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
17 | 1, 11, 16, 3 | ply1scl0 22316 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐴‘ 0 ) = (0g‘𝑃)) |
18 | 6, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴‘ 0 ) = (0g‘𝑃)) |
19 | 18 | eqcomd 2746 | . . 3 ⊢ (𝜑 → (0g‘𝑃) = (𝐴‘ 0 )) |
20 | 15, 19 | ifeq12d 4569 | . 2 ⊢ (𝜑 → if(𝐼 = 𝐽, (1r‘𝑃), (0g‘𝑃)) = if(𝐼 = 𝐽, (𝐴‘ 1 ), (𝐴‘ 0 ))) |
21 | 10, 20 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, (𝐴‘ 1 ), (𝐴‘ 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ifcif 4548 ‘cfv 6575 (class class class)co 7450 Fincfn 9005 0gc0g 17501 1rcur 20210 Ringcrg 20262 algSccascl 21897 Poly1cpl1 22201 Mat cmat 22434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-ofr 7717 df-om 7906 df-1st 8032 df-2nd 8033 df-supp 8204 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-pm 8889 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-fsupp 9434 df-sup 9513 df-oi 9581 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-fz 13570 df-fzo 13714 df-seq 14055 df-hash 14382 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ple 17333 df-ds 17335 df-hom 17337 df-cco 17338 df-0g 17503 df-gsum 17504 df-prds 17509 df-pws 17511 df-mre 17646 df-mrc 17647 df-acs 17649 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-mhm 18820 df-submnd 18821 df-grp 18978 df-minusg 18979 df-sbg 18980 df-mulg 19110 df-subg 19165 df-ghm 19255 df-cntz 19359 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-ring 20264 df-subrng 20574 df-subrg 20599 df-lmod 20884 df-lss 20955 df-sra 21197 df-rgmod 21198 df-dsmm 21777 df-frlm 21792 df-ascl 21900 df-psr 21954 df-mpl 21956 df-opsr 21958 df-psr1 22204 df-ply1 22206 df-mamu 22418 df-mat 22435 |
This theorem is referenced by: 1elcpmat 22744 |
Copyright terms: Public domain | W3C validator |