MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbico1 Structured version   Visualization version   GIF version

Theorem lbico1 13461
Description: The lower bound belongs to a closed-below, open-above interval. See lbicc2 13524. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
lbico1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))

Proof of Theorem lbico1
StepHypRef Expression
1 simp1 1136 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
2 xrleid 13213 . . 3 (𝐴 ∈ ℝ*𝐴𝐴)
323ad2ant1 1133 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴𝐴)
4 simp3 1138 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 < 𝐵)
5 elico1 13450 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,)𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴 < 𝐵)))
653adant3 1132 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐴 ∈ (𝐴[,)𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴 < 𝐵)))
71, 3, 4, 6mpbir3and 1342 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087  wcel 2108   class class class wbr 5166  (class class class)co 7448  *cxr 11323   < clt 11324  cle 11325  [,)cico 13409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ico 13413
This theorem is referenced by:  icopnfsup  13916  metustid  24588  ioombl  25619  dchrvmasumlem2  27560  pntleme  27670  sxbrsigalem0  34236  icoreunrn  37325  dvasin  37664  dvacos  37665  limcresioolb  45564  xlimmnfvlem1  45753  fourierdlem93  46120
  Copyright terms: Public domain W3C validator