| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbico1 | Structured version Visualization version GIF version | ||
| Description: The lower bound belongs to a closed-below, open-above interval. See lbicc2 13479. (Contributed by FL, 29-May-2014.) |
| Ref | Expression |
|---|---|
| lbico1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*) | |
| 2 | xrleid 13165 | . . 3 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ≤ 𝐴) |
| 4 | simp3 1138 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 5 | elico1 13403 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,)𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 < 𝐵))) | |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → (𝐴 ∈ (𝐴[,)𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 < 𝐵))) |
| 7 | 1, 3, 4, 6 | mpbir3and 1343 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7403 ℝ*cxr 11266 < clt 11267 ≤ cle 11268 [,)cico 13362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-ico 13366 |
| This theorem is referenced by: icopnfsup 13880 metustid 24491 ioombl 25516 dchrvmasumlem2 27459 pntleme 27569 sxbrsigalem0 34249 icoreunrn 37323 dvasin 37674 dvacos 37675 limcresioolb 45620 xlimmnfvlem1 45809 fourierdlem93 46176 |
| Copyright terms: Public domain | W3C validator |