MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleme Structured version   Visualization version   GIF version

Theorem pntleme 27576
Description: Lemma for pnt 27582. Package up pntlemo 27575 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntleme.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntleme.K (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntleme.C (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
Assertion
Ref Expression
pntleme (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Distinct variable groups:   𝑧,𝐶   𝑤,𝐹   𝑦,𝑧   𝑢,𝑘,𝑦,𝑧,𝐿   𝑘,𝐾,𝑦,𝑧   𝜑,𝑣   𝑖,𝑘,𝑢,𝑣,𝑤,𝑦,𝑧,𝑅   𝑤,𝑈,𝑧   𝑣,𝑊,𝑤,𝑧   𝑘,𝑋,𝑦,𝑧   𝑖,𝑌,𝑧   𝑘,𝑎,𝑢,𝑣,𝑦,𝑧,𝐸
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑢,𝑖,𝑘,𝑎)   𝐴(𝑦,𝑧,𝑤,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐶(𝑦,𝑤,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐷(𝑦,𝑧,𝑤,𝑣,𝑢,𝑖,𝑘,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐸(𝑤,𝑖)   𝐹(𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐾(𝑤,𝑣,𝑢,𝑖,𝑎)   𝐿(𝑤,𝑣,𝑖,𝑎)   𝑊(𝑦,𝑢,𝑖,𝑘,𝑎)   𝑋(𝑤,𝑣,𝑢,𝑖,𝑎)   𝑌(𝑦,𝑤,𝑣,𝑢,𝑘,𝑎)

Proof of Theorem pntleme
StepHypRef Expression
1 pntlem1.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . 3 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . 3 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . 3 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . 3 𝐷 = (𝐴 + 1)
6 pntlem1.f . . 3 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . 3 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . 3 (𝜑𝑈𝐴)
9 pntlem1.e . . 3 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . 3 𝐾 = (exp‘(𝐵 / 𝐸))
11 pntlem1.y . . 3 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
12 pntlem1.x . . 3 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
13 pntlem1.c . . 3 (𝜑𝐶 ∈ ℝ+)
14 pntlem1.w . . 3 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlema 27564 . 2 (𝜑𝑊 ∈ ℝ+)
162adantr 480 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝐴 ∈ ℝ+)
173adantr 480 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝐵 ∈ ℝ+)
184adantr 480 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝐿 ∈ (0(,)1))
197adantr 480 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝑈 ∈ ℝ+)
208adantr 480 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝑈𝐴)
2111adantr 480 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
2212adantr 480 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → (𝑋 ∈ ℝ+𝑌 < 𝑋))
2313adantr 480 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝐶 ∈ ℝ+)
24 simpr 484 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → 𝑣 ∈ (𝑊[,)+∞))
25 eqid 2736 . . . 4 ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
26 eqid 2736 . . . 4 (⌊‘(((log‘𝑣) / (log‘𝐾)) / 2)) = (⌊‘(((log‘𝑣) / (log‘𝐾)) / 2))
27 pntleme.U . . . . 5 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
2827adantr 480 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
29 oveq1 7417 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑘 · 𝑦) = (𝐾 · 𝑦))
3029breq2d 5136 . . . . . . . . . 10 (𝑘 = 𝐾 → (((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)))
3130anbi2d 630 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦))))
3231anbi1d 631 . . . . . . . 8 (𝑘 = 𝐾 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
3332rexbidv 3165 . . . . . . 7 (𝑘 = 𝐾 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
3433ralbidv 3164 . . . . . 6 (𝑘 = 𝐾 → (∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
35 pntleme.K . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
361, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 27563 . . . . . . . . 9 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3736simp2d 1143 . . . . . . . 8 (𝜑𝐾 ∈ ℝ+)
3837rpxrd 13057 . . . . . . 7 (𝜑𝐾 ∈ ℝ*)
39 pnfxr 11294 . . . . . . . 8 +∞ ∈ ℝ*
4039a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
4137rpred 13056 . . . . . . . 8 (𝜑𝐾 ∈ ℝ)
4241ltpnfd 13142 . . . . . . 7 (𝜑𝐾 < +∞)
43 lbico1 13422 . . . . . . 7 ((𝐾 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐾 < +∞) → 𝐾 ∈ (𝐾[,)+∞))
4438, 40, 42, 43syl3anc 1373 . . . . . 6 (𝜑𝐾 ∈ (𝐾[,)+∞))
4534, 35, 44rspcdva 3607 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
4645adantr 480 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
47 pntleme.C . . . . 5 (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
4847adantr 480 . . . 4 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
491, 16, 17, 18, 5, 6, 19, 20, 9, 10, 21, 22, 23, 14, 24, 25, 26, 28, 46, 48pntlemo 27575 . . 3 ((𝜑𝑣 ∈ (𝑊[,)+∞)) → (abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
5049ralrimiva 3133 . 2 (𝜑 → ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
51 oveq1 7417 . . . 4 (𝑤 = 𝑊 → (𝑤[,)+∞) = (𝑊[,)+∞))
5251raleqdv 3309 . . 3 (𝑤 = 𝑊 → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))) ↔ ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
5352rspcev 3606 . 2 ((𝑊 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
5415, 50, 53syl2anc 584 1 (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  2c2 12300  3c3 12301  4c4 12302  cdc 12713  +crp 13013  (,)cioo 13367  [,)cico 13369  [,]cicc 13370  ...cfz 13529  cfl 13812  cexp 14084  abscabs 15258  Σcsu 15707  expce 16082  logclog 26520  ψcchp 27060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-e 16089  df-sin 16090  df-cos 16091  df-tan 16092  df-pi 16093  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-ulm 26343  df-log 26522  df-atan 26834  df-em 26960  df-vma 27065  df-chp 27066
This theorem is referenced by:  pntlemp  27578
  Copyright terms: Public domain W3C validator