![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pntleme | Structured version Visualization version GIF version |
Description: Lemma for pnt 27673. Package up pntlemo 27666 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.) |
Ref | Expression |
---|---|
pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
pntlem1.y | ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) |
pntlem1.x | ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
pntlem1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
pntlem1.w | ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
pntleme.U | ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) |
pntleme.K | ⊢ (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
pntleme.C | ⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) |
Ref | Expression |
---|---|
pntleme | ⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntlem1.r | . . 3 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
2 | pntlem1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
3 | pntlem1.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
4 | pntlem1.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
5 | pntlem1.d | . . 3 ⊢ 𝐷 = (𝐴 + 1) | |
6 | pntlem1.f | . . 3 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
7 | pntlem1.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
8 | pntlem1.u2 | . . 3 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
9 | pntlem1.e | . . 3 ⊢ 𝐸 = (𝑈 / 𝐷) | |
10 | pntlem1.k | . . 3 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
11 | pntlem1.y | . . 3 ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) | |
12 | pntlem1.x | . . 3 ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) | |
13 | pntlem1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
14 | pntlem1.w | . . 3 ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | pntlema 27655 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℝ+) |
16 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝐴 ∈ ℝ+) |
17 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝐵 ∈ ℝ+) |
18 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝐿 ∈ (0(,)1)) |
19 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝑈 ∈ ℝ+) |
20 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝑈 ≤ 𝐴) |
21 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) |
22 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
23 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝐶 ∈ ℝ+) |
24 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝑣 ∈ (𝑊[,)+∞)) | |
25 | eqid 2735 | . . . 4 ⊢ ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) | |
26 | eqid 2735 | . . . 4 ⊢ (⌊‘(((log‘𝑣) / (log‘𝐾)) / 2)) = (⌊‘(((log‘𝑣) / (log‘𝐾)) / 2)) | |
27 | pntleme.U | . . . . 5 ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) | |
28 | 27 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) |
29 | oveq1 7438 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝐾 → (𝑘 · 𝑦) = (𝐾 · 𝑦)) | |
30 | 29 | breq2d 5160 | . . . . . . . . . 10 ⊢ (𝑘 = 𝐾 → (((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦))) |
31 | 30 | anbi2d 630 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)))) |
32 | 31 | anbi1d 631 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ↔ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) |
33 | 32 | rexbidv 3177 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) |
34 | 33 | ralbidv 3176 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) |
35 | pntleme.K | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | pntlemc 27654 | . . . . . . . . 9 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
37 | 36 | simp2d 1142 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
38 | 37 | rpxrd 13076 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℝ*) |
39 | pnfxr 11313 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
40 | 39 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → +∞ ∈ ℝ*) |
41 | 37 | rpred 13075 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
42 | 41 | ltpnfd 13161 | . . . . . . 7 ⊢ (𝜑 → 𝐾 < +∞) |
43 | lbico1 13438 | . . . . . . 7 ⊢ ((𝐾 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐾 < +∞) → 𝐾 ∈ (𝐾[,)+∞)) | |
44 | 38, 40, 42, 43 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝐾[,)+∞)) |
45 | 34, 35, 44 | rspcdva 3623 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
46 | 45 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
47 | pntleme.C | . . . . 5 ⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) | |
48 | 47 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) |
49 | 1, 16, 17, 18, 5, 6, 19, 20, 9, 10, 21, 22, 23, 14, 24, 25, 26, 28, 46, 48 | pntlemo 27666 | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → (abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) |
50 | 49 | ralrimiva 3144 | . 2 ⊢ (𝜑 → ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) |
51 | oveq1 7438 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤[,)+∞) = (𝑊[,)+∞)) | |
52 | 51 | raleqdv 3324 | . . 3 ⊢ (𝑤 = 𝑊 → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))) ↔ ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))) |
53 | 52 | rspcev 3622 | . 2 ⊢ ((𝑊 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) |
54 | 15, 50, 53 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 − cmin 11490 / cdiv 11918 2c2 12319 3c3 12320 4c4 12321 ;cdc 12731 ℝ+crp 13032 (,)cioo 13384 [,)cico 13386 [,]cicc 13387 ...cfz 13544 ⌊cfl 13827 ↑cexp 14099 abscabs 15270 Σcsu 15719 expce 16094 logclog 26611 ψcchp 27151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-e 16101 df-sin 16102 df-cos 16103 df-tan 16104 df-pi 16105 df-dvds 16288 df-gcd 16529 df-prm 16706 df-pc 16871 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-cmp 23411 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 df-ulm 26435 df-log 26613 df-atan 26925 df-em 27051 df-vma 27156 df-chp 27157 |
This theorem is referenced by: pntlemp 27669 |
Copyright terms: Public domain | W3C validator |