| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntleme | Structured version Visualization version GIF version | ||
| Description: Lemma for pnt 27501. Package up pntlemo 27494 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
| pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
| pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
| pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
| pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
| pntlem1.y | ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) |
| pntlem1.x | ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
| pntlem1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| pntlem1.w | ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
| pntleme.U | ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) |
| pntleme.K | ⊢ (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
| pntleme.C | ⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) |
| Ref | Expression |
|---|---|
| pntleme | ⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pntlem1.r | . . 3 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 2 | pntlem1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 3 | pntlem1.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 4 | pntlem1.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
| 5 | pntlem1.d | . . 3 ⊢ 𝐷 = (𝐴 + 1) | |
| 6 | pntlem1.f | . . 3 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
| 7 | pntlem1.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
| 8 | pntlem1.u2 | . . 3 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
| 9 | pntlem1.e | . . 3 ⊢ 𝐸 = (𝑈 / 𝐷) | |
| 10 | pntlem1.k | . . 3 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
| 11 | pntlem1.y | . . 3 ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) | |
| 12 | pntlem1.x | . . 3 ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) | |
| 13 | pntlem1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 14 | pntlem1.w | . . 3 ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | pntlema 27483 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℝ+) |
| 16 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝐴 ∈ ℝ+) |
| 17 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝐵 ∈ ℝ+) |
| 18 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝐿 ∈ (0(,)1)) |
| 19 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝑈 ∈ ℝ+) |
| 20 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝑈 ≤ 𝐴) |
| 21 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) |
| 22 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
| 23 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝐶 ∈ ℝ+) |
| 24 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → 𝑣 ∈ (𝑊[,)+∞)) | |
| 25 | eqid 2729 | . . . 4 ⊢ ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) | |
| 26 | eqid 2729 | . . . 4 ⊢ (⌊‘(((log‘𝑣) / (log‘𝐾)) / 2)) = (⌊‘(((log‘𝑣) / (log‘𝐾)) / 2)) | |
| 27 | pntleme.U | . . . . 5 ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) | |
| 28 | 27 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) |
| 29 | oveq1 7376 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝐾 → (𝑘 · 𝑦) = (𝐾 · 𝑦)) | |
| 30 | 29 | breq2d 5114 | . . . . . . . . . 10 ⊢ (𝑘 = 𝐾 → (((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦))) |
| 31 | 30 | anbi2d 630 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)))) |
| 32 | 31 | anbi1d 631 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ↔ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) |
| 33 | 32 | rexbidv 3157 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) |
| 34 | 33 | ralbidv 3156 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) |
| 35 | pntleme.K | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | |
| 36 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | pntlemc 27482 | . . . . . . . . 9 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
| 37 | 36 | simp2d 1143 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
| 38 | 37 | rpxrd 12972 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℝ*) |
| 39 | pnfxr 11204 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 40 | 39 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 41 | 37 | rpred 12971 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 42 | 41 | ltpnfd 13057 | . . . . . . 7 ⊢ (𝜑 → 𝐾 < +∞) |
| 43 | lbico1 13337 | . . . . . . 7 ⊢ ((𝐾 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐾 < +∞) → 𝐾 ∈ (𝐾[,)+∞)) | |
| 44 | 38, 40, 42, 43 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝐾[,)+∞)) |
| 45 | 34, 35, 44 | rspcdva 3586 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
| 46 | 45 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
| 47 | pntleme.C | . . . . 5 ⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) | |
| 48 | 47 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) |
| 49 | 1, 16, 17, 18, 5, 6, 19, 20, 9, 10, 21, 22, 23, 14, 24, 25, 26, 28, 46, 48 | pntlemo 27494 | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ (𝑊[,)+∞)) → (abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) |
| 50 | 49 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) |
| 51 | oveq1 7376 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤[,)+∞) = (𝑊[,)+∞)) | |
| 52 | 51 | raleqdv 3296 | . . 3 ⊢ (𝑤 = 𝑊 → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))) ↔ ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))) |
| 53 | 52 | rspcev 3585 | . 2 ⊢ ((𝑊 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑊[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) |
| 54 | 15, 50, 53 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 − cmin 11381 / cdiv 11811 2c2 12217 3c3 12218 4c4 12219 ;cdc 12625 ℝ+crp 12927 (,)cioo 13282 [,)cico 13284 [,]cicc 13285 ...cfz 13444 ⌊cfl 13728 ↑cexp 14002 abscabs 15176 Σcsu 15628 expce 16003 logclog 26439 ψcchp 26979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-e 16010 df-sin 16011 df-cos 16012 df-tan 16013 df-pi 16014 df-dvds 16199 df-gcd 16441 df-prm 16618 df-pc 16784 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19225 df-cmn 19688 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-lp 22999 df-perf 23000 df-cn 23090 df-cnp 23091 df-haus 23178 df-cmp 23250 df-tx 23425 df-hmeo 23618 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-xms 24184 df-ms 24185 df-tms 24186 df-cncf 24747 df-limc 25743 df-dv 25744 df-ulm 26262 df-log 26441 df-atan 26753 df-em 26879 df-vma 26984 df-chp 26985 |
| This theorem is referenced by: pntlemp 27497 |
| Copyright terms: Public domain | W3C validator |